
1

Automatic Detection of Java Cryptographic API
Misuses: Are We There Yet?

Ying Zhang, Mahir Kabir, Ya Xiao, Danfeng (Daphne) Yao, Na Meng

Abstract—The Java platform provides various cryptographic APIs to facilitate secure coding. However, correctly using these APIs is
challenging for developers who lack cybersecurity training. Prior work shows that many developers misused APIs and consequently
introduced vulnerabilities into their software. To eliminate such vulnerabilities, people created tools to detect and/or fix cryptographic
API misuses. However, it is still unknown (1) how current tools are designed to detect cryptographic API misuses, (2) how effectively
the tools work to locate API misuses, and (3) how developers perceive the usefulness of tools’ outputs. For this paper, we conducted
an empirical study to investigate the research questions mentioned above. Specifically, we first conducted a literature survey on
existing tools and compared their approach design from different angles. Then we applied six of the tools to three popularly used
benchmarks to measure tools’ effectiveness of API-misuse detection. Next, we applied the tools to 200 Apache projects and sent 57
vulnerability reports to developers for their feedback. Our study revealed interesting phenomena. For instance, none of the six tools
was found universally better than the others; however, CogniCrypt, CogniGuard, and Xanitizer outperformed SonarQube. More
developers rejected tools’ reports than those who accepted reports (30 vs. 9) due to their concerns on tools’ capabilities, the
correctness of suggested fixes, and the exploitability of reported issues. This study reveals a significant gap between the
state-of-the-art tools and developers’ expectations; it sheds light on future research in vulnerability detection.

Index Terms—Detection of cryptographic API misuses, developers’ feedback, empirical
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1 INTRODUCTION

JCA (Java Cryptography Architecture [1]) and JSSE (Java
Secure Socket Extension [2]) are two cryptographic frame-
works provided by the standard Java platform. The applica-
tion programming interfaces (APIs) offered by these frame-
works intend to ease developers’ secure programming like
generating keys and establishing secure communications.

However, the APIs are actually not easy to use for
two reasons. First, some APIs are overly complicated but
poorly documented [3]–[5]. Second, developers lack neces-
sary cybersecurity training; they are unaware of the security
implications of coding options (e.g., the parameter values,
calling sequences, or overriding logic of APIs) [5]–[8]. Con-
sequently, many developers misused cryptographic APIs,
built security functionalities insecurely, and introduced vul-
nerabilities or weaknesses to software. Specifically, Fischer
et al. found that the cryptographic API misuses posted
on StackOverflow [9] were copied and pasted into 196,403
Android applications available on Google Play [10]. Ra-
haman et al. revealed similar API misuses in 39 high-quality
Apache projects [11]. Fahl et al. [12] and Georgiev et al. [13]
separately showed that hackers could exploit such API-
related vulnerabilities to steal data (e.g., user credentials).

Tools were recently built to scan Java applications, to de-
tect the specialized category of security vulnerabilities—misuses
of cryptographic APIs [10], [11], [14]–[17]. However, it is un-
clear what are the strengths and weaknesses of these tools,
how well they help developers improve existing secure
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coding practices, and how we can design better approaches.
Therefore, for this paper, we conducted a novel empirical
study to explore (1) how current tools are designed to
detect cryptographic API misuses, (2) how effectively the
tools work to locate API misuses, and (3) how developers
perceive the usefulness of tools’ outputs. Specifically, there
are four steps in our study method. First, we searched in the
ACM digital library for state-of-the-art tools, which analyze
Java-based applications for any API misuses relevant to JCA
and JSSE. Second, we compared the approach design of
tools in terms of API usage pattern representations, pattern-
matching logic, input/output infos, and public availability.

Third, among all explored tools, we identified six pub-
licly available, executable, and comparable tools: Cog-
niCrypt [18], CryptoGuard [11], CryptoTutor [19], Find-
SecBugs [20], SonarQube [21], and Xanitizer [22]. To empir-
ically compare tools’ effectiveness, we applied the six tools
to three public program benchmarks: CryptoBench [23],
MUBench [24], and OWASP Benchmark [25]. Based on the
ground truth of cryptographic API misuses and manual
validation, we evaluated tools’ precision, recall, and F-score
rates. Fourth, to assess the relevance of tool outputs, we also
applied the 6 tools to another dataset of 200 Apache projects,
and filed 57 pull requests (PRs) to seek for developers’
feedback. After sending our descriptions to the owners of
35 projects, we received 47 responses and analyzed the in-
formation to learn about developers’ opinions. Our research
explores the following research questions (RQs):

RQ1: How are current tools designed to detect cryptographic
API misuses? We found that current tools represent misuse
patterns as either hardcoded rules in tool implementation,
Java code snippets, or templates described with domain-
specific languages (DSL). These tools match Java programs
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against known misuse patterns via static program analysis,
clone detection, or machine learning to reveal API misuses.
Among different design options, most tools adopt hard-
coded rules and inter-procedural static analysis probably
because such a design can effectively locate misuses.

RQ2: How effectively do current tools work to locate cryp-
tographic API misuses? The six experimented tools focus on
slightly different pattern sets and achieved distinct trade-
offs between precision and recall. Specifically, CryptoGuard
outperformed other tools on CryptoBench, getting 85% F-
score; Xanitizer acquired the highest F-score when being
applied to OWASP Benchmark and MUBench (i.e., 100%
and 72%). There is no tool universally better than the others.

RQ3: How do developers perceive the usefulness of tools’
outputs? According to the 47 responses we received, most
developers (i.e., 30) rejected the reported vulnerabilities,
fewer developers (i.e., 17) wanted to address the reported
issues, and even fewer developers (i.e., 9) replaced API
misuses by following tool-generated guidance. The tools’
reports usually did not change developers’ coding practices.
We identified three factors that prevent developers from
addressing reported issues. First, the fixing suggestions
are vague and incomplete. Second, developers need evi-
dence of security exploits enabled by those vulnerabilities.
Third, some detected misuses were in test code or security-
irrelevant program contexts, and developers believed those
issues to cause no security consequence.

To sum up, in this paper, we made the following research
contributions:

• We analyzed the approach design of existing detec-
tors for cryptographic API misuses, and empirically
compared six of those detectors. No prior work did
such a comprehensive and systematic evaluation.

• We conducted a novel study with developers, via
describing for them the security vulnerabilities re-
ported by current tools. We got surprising feedback.

• By manually inspecting developers’ feedback and
related program context, we characterized the gap
between existing tools and developers’ expectations.

In the following sections, we will first introduce the misuse
patterns of cryptographic APIs (Section 2). Then we will
present our literature survey, which describes the existing
API-misuse detectors to answer RQ1 (Section 3). Next, we
will describe our empirical evaluation of six state-of-the-art
tools to explore RQ2 (Section 4). Finally, we will explain our
study with developers to investigate RQ3 (Section 5). At
https://figshare.com/s/30bd909fb08804d14255, we open-
sourced our experiment results.

2 MISUSE PATTERNS OF CRYPTOGRAPHIC APIS
The Java platform provides two important frameworks to
enable security implementation: JCA and JSSE. JCA pro-
vides APIs to implement concepts of cryptography such
as digital signatures, message digests, certificates and their
validation, encryption, key generation and management,
and secure random number generation [1]. JSSE enables se-
cure internet communications; it includes APIs for creation
of secure channels, data encryption, server authentication,
message integrity, and optional client authentication [2].

Among all APIs defined in JCA and JSSE, there are
13 Java types (i.e., classes or interfaces) frequently men-
tioned in the API-misuse patterns summarized by prior
research [10]–[12], [15], [17], [26], [27]. As shown in Table 1,
10 Java types are from JCA and the other 3 types are from
JSSE. Each of these Java types has one or more method
APIs that are prone to misuse, each API may be misused
in one or multiple ways, and each API misuse pattern is
considered a code vulnerability. To succinctly represent all
API misuse patterns in Table 1, we list all Java type APIs
(the container classes/interfaces of methods) instead of the
misused method APIs, and summarize the misuse patterns
as well as related correct usage. In Table 1, column Insecure
describes API misuse patterns, while Secure summarizes
the correct usage patterns with security guarantees.

The Common Weakness Enumeration (CWE) [28] is a
category system for software weaknesses and vulnerabil-
ities. To facilitate understanding of API misuse patterns,
we map the patterns to six CWE categories to explain their
security implications:

1. CWE-327: Use of a Broken or Risky Cryptographic
Algorithm. When the methods APIs of three Java types
(i.e., Cipher.getInstance(...), MessageDigest.getInstance(...)

and SecretKeyFactory.getInstance(...)) get invoked with im-
proper parameters (e.g., "DES" and "MD5"), security experts
consider those invocations to be vulnerable. This is because
the parameter values indicate usage of broken or risky
cryptographic algorithms, and the usage may result in the
exposure of sensitive information [29]. For instance, "DES"

on line 10 in Listing 1 implies using the symmetric-key
algorithm DES (Data Encryption Standard), which is proven
insecure [30]. Thus, the method invocation on line 10 is
considered an instance of API misuse.

Listing 1: A code snippet that misuses three APIs
1 p r i v a t e s t a t i c byte [ ] desKey = ”12345678”. getBytes ( ) ;
2 p r i v a t e s t a t i c byte [ ] iv = ”12345678”. getBytes ( ) ;
3 publ ic s t a t i c void insecureEncrypt ( S t r i n g in ) {
4 t r y {
5 // Declare an IV parameter with constant (CWE-330).
6 IvParameterSpec ivSpec = new IvParameterSpec ( iv ) ;
7 // Create a secret key with a hardcoded constant (CWE-798).
8 SecretKey key = new SecretKeySpec ( desKey , ”DES”) ;
9 // Declare a DES cipher although DES is provenly insecure (CWE-327).

10 Cipher c=Cipher . g e t I n s t a n c e (”DES/CBC/PKCS5Padding ”) ;
11 c . i n i t ( Cipher .ENCRYPT MODE, key , ivSpec ) ;
12 . . . } . . . }

Listing 2: Insecure method overriding for TrustAllManager

1 p r i v a t e s t a t i c TrustManager createTrustAllManager ( ) {
2 return new X509TrustManager ( ) {
3 // Override checkClientTrusted (...) to have empty body (CWE-295).
4 @Override
5 publ ic void checkCl ientTrusted ( . . . ) throws

C e r t i f i c a t e E x c e p t i o n {}
6 // Override checkServerTrusted (...) to have empty body (CWE-295).
7 @Override
8 publ ic void checkServerTrusted ( . . . ) throws

C e r t i f i c a t e E x c e p t i o n {}
9 . . . } ;}

2. CWE-295: Improper Certificate Validation. When
the method APIs HostnameVerifier.verify(...),
TrustManager.checkClientTrusted(...), and
TrustManager.checkServerTrusted(...) get overridden with
(almost) empty code implementation, security experts
consider those overridden methods to be vulnerable. This
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TABLE 1: The insecure and secure usage patterns of method APIs related to 13 Java classes/interfaces

Java Type API Frame-
work

Insecure Secure CWE Category

Cipher JCA The passed name of a requested transforma-
tion is RC2, RC4, RC5, DES, DESede, 3DES,
AES/ECB, RSA with NoPadding or Blowfish.

The parameter value is AES/GCM,
AES/CCM, AES/CFB, AEC/CBC, or {RSA,
RSA/ECB, RSA/None} with OAEP padding.

CWE-327: Use of a Broken
or Risky Cryptographic Al-
gorithm

HostnameVerifier JSSE Allow all hostnames. Disallow the hostnames that do not pass vali-
dation.

CWE-295: Improper Cer-
tificate Validation

IvParameterSpec JCA Create an initialization vector (IV) with a con-
stant.

Create an IV with an unpredictable random
value.

CWE-330: Use of Insuffi-
ciently Random Values

KeyPairGenerator JCA Create an RSA key pair whose key size < 2048
bits, or create an ECC key pair whose key size <
224 bits.

RSA key size >= 2048 bits, or ECC key size
>= 224 bits.

CWE-326: Inadequate En-
cryption Strength

KeyStore JCA When loading a keystore from a given input
stream, the provided password is a hardcoded
constant non-null value.

The password is retrieved from some external
source (e.g., database or file)

CWE-798: Use of Hard-
coded Credentials

MessageDigest JCA The used hash algorithm is MD2, MD5, SHA-1,
or SHA-224.

The parameter value is SHA-256, SHA-512 or
SHA-3.

CWE-327

PBEKeySpec JCA Create a PBEKey based on a constant salt. Set the salt to an unpredictable random value. CWE-330
PBEParameterSpec JCA Create a parameter set for password-based en-

cryption (PBE) by setting salt size < 64 bits,
iteration count <1000, or a constant salt.

Set salt size >= 64 bits, iteration count
>=1000. Set the salt to an unpredictable ran-
dom value.

CWE-326, CWE-330

SecretKeyFactory JCA Create a secret key with the algorithm DES,
DESede, ARCFOUR, or PBEWithMD5AndDES.

Create a secret key with AES or PBEWithH-
macSHA256AndAES 128.

CWE-327

SecretKeySpec JCA Create a secret key with a hardcoded constant. Create a secret key with a raw key (i.e., cre-
dential) retrieved from some external source
or an unpredictable random value dynami-
cally generated.

CWE-798

SecureRandom JCA Use Random to generate random values, set
SecureRandom to use a constant seed, or in-
voke SecureRandom.setSeed() before call-
ing any nextXXX() method (e.g., nextInt()).

Replace Random with SecureRandom. If
setSeed(...) is called, use a parameter
that is generated by nextBytes().

CWE-330

SSLContext JSSE Use the protocol SSL, SSLv2.0, SSLv3.0, TLSv1.0,
or TLSv1.1.

Use the protocol TLSv1.2 or TLSv1.3. CWE-757: Selection of Less-
Secure Algorithm During
Negotiation

TrustManager JSSE Trust all clients and servers. Check clients or servers. CWE-295

is because with naı̈ve or empty code implementation, a
software program does not validate, or incorrectly validates,
hostnames and/or certificates; it may allow an attacker to
spoof a trusted entity by interfering in the communication
path between the host and client [31]. For instance, Listing 2
shows the empty bodies for checkXXX(...) methods of
TrustManager. Such naı̈ve method overriding actually voids
the intended protection mechanism offered by JSSE.

3. CWE-330: Use of Insufficiently Random Values. When
some methods of four Java types (i.e., IvParameterSpec,
PBEKeySpec, PBEParameterSpec, and SecureRandom) get called
with constants or predictable random values, the method
calls are considered insecure. This is because when software
generates predictable values in a context requiring unpre-
dictability, it may be possible for an attacker to guess the
next value that will be generated, and use this guess to im-
personate another user or access sensitive information [32].
Line 6 of Listing 1 presents an exemplar API misuse, which
creates an IvParameterSpec object with a constant array de-
rived from the string literal "12345678".

4. CWE-326: Inadequate Encryption Strength. When cer-
tain methods of two Java types (i.e., KeyPairGenerator and
PBEParameterSpec) are invoked, if the parameter values are
constants within specific value ranges, the invocations are
considered vulnerable. This is because when generating
keys or creating parameters used for password-based en-
cryption (PBE), if a program specifies relatively low num-
bers for key lengths, salt sizes, or iteration counts, the
leveraged encryption scheme is theoretically sound but not
strong enough for the level of protection required. The weak
encryption scheme can be subjected to brute force attacks
that have a reasonable chance of succeeding using current
attack methods and resources [33]. Listing 3 shows an

exemplar misuse of KeyPairGenerator APIs, which initializes
a generator to create RSA key pairs with the 1024-bit key
size; however, the key size should be no smaller than 2048.

Listing 3: An exemplar misuse of the KeyPairGenerator APIs
1 KeyPairGenerator gen=KeyPairGenerator . g e t I n s t a n c e (”RSA”) ;
2 // The RSA key size should be at least 2048 (CWE-326).
3 gen . i n i t i a l i z e ( 1 0 2 4 ) ;
4 KeyPair kp = gen . generateKeyPair ( ) ;

5. CWE-798: Use of Hardcoded Credentials. When a pro-
gram calls KeyStore.load(...) or SecretKeySpec(...) with a
hardcoded constant as the credential parameter, the method
invocation is treated vulnerable. The reason is that hard-
coded credentials typically create a significant hole that
allows an attacker to bypass the authentication that has been
configured by the software administrator [34]. Line 8 in List-
ing 1 shows an exemplar API misuse of this category. In the
example, SecretKeySpec(...) is invoked with desKey, which
credential comes from a hardcoded constant "12345678".

6. CWE-757: Selection of Less-Secure Algorithm During
Negotiation (’Algorithm Downgrade’). When a program calls
SSLContext.getInstance(...) with any of the following pa-
rameters: "SSL", "SSLv2", "SSLv3", "TLSv1.0", and "TLSv1.1", the
invocation is treated insecure. Secure Socket Layer (SSL) and
TLS (Transport Layer Security) are standard protocols for
keeping an internet connection secure and safeguarding the
transmitted data [35]. As a successor of SSL, TLS is more
secure. Security exerts recommend to enforce TLS 1.2 as the
minimum protocol version and to disallow older versions
like TLS 1.0. Failure to do so could open the door to down-
grade attacks: a malicious actor who is able to intercept the
connection could modify the requested protocol version and
downgrade it to a less secure version [36], [37].
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Summary: We defined Table 1 to include only the
API misuse patterns frequently mentioned by literature for
three reasons. First, different literatures sometimes define
conflicting patterns, so focusing on the most common ones
can avoid arguable cases. Second, these patterns enable us
to empirically compare the effectiveness of different tools on
the same benchmarks. Third, these patterns are representa-
tive, so our study based on them can reflect developers’
general perception of security-API misuses.

3 A LITERATURE SURVEY OF CURRENT TOOLS

Tools were built to automatically detect Java cryptographic
API misuses. These tools typically start with certain rep-
resentations of misuse patterns, adopt different techniques
to scan programs for pattern matches, and generate reports
when matches are found.

Table 2 shows an overview of existing detectors. This list
is complete to the best of our knowledge. We searched for
literatures published in 2020, with keywords “secure API
misuse Java” in the ACM digital library. We then read the
retrieved papers together with their references to identify
all relevant tools. For each tool, this table summarizes
the pattern representation, pattern-matching strategy, and
output; it also characterizes two properties: availability and
the input format. Availability describes whether a tool is
publicly available or just has its methodology described in
literature. Input format reflects whether a tool can analyze
Java source code, JAR files, or APK files. Among the 20 tools
studied, there are 15 research prototypes from academia,
and 5 tools from industry or open source communities.

3.1 Research Prototypes from Academia
Most tools that fall into this category scan the APK files
of Android apps. Among the 15 tools, 10 tools hardcode
patterns as built-in rules probably due to the simplicity
of such representations; another 5 tools represent patterns
with code snippets or templates written in a domain-specific
language. 11 tools conduct inter-procedural static analysis
for pattern matching, perhaps due to the relatively higher
precision of such analysis than intra-procedural analysis
and other techniques. Five tools suggest customized repairs.

MalloDroid [12] scans the decompiled code of Android
apps to detect potential vulnerabilities related to SSL. It uses
intra-procedural static analysis to i) extract networking API
calls and valid HTTP(S) URLs, ii) check the validity of SSL
certificates for all extracted HTTPS hosts, and iii) identify
apps that validate certificates inadequately (CWE-295).

CryptoLint [15] is similar to MalloDroid, because it also
extends Androguard [49]—a tool to decompile APK files
into Dalvik bytecode and to statically analyze the bytecode.
However, CryptoLint hardcodes six rules:

1) Do not use ECB mode for encryption (CWE-327).
2) Do not use a non-random IV for CBC encryption

(CWE-330).
3) Do not use constant encryption keys (CWE-798).
4) Do not use constant salts for PBE (CWE-330).
5) Do not use fewer than 1,000 iterations for PBE

(CWE-326).
6) Do not use static seeds to seed SecureRandom(...)

(CWE-330).

For each located potentially vulnerable API call (e.g.,
Cipher.getInstance(v)), CryptoLint conducts inter-
procedural backward slicing to decide whether the used
parameter value is insecure (e.g., v="AES/ECB"). Although its
design has been followed by later tools, CryptoLint is not
publicly available.

BinSight [38] reimplements CryptoLint. However, its
design seems better as it maps Java classifiers to their
container software (i.e., an Android app or a third-party
library) in a semi-automated way. When Android apps are
obfuscated and identifiers are renamed, it is challenging to
correctly map detected vulnerabilities to the original code or
software libraries. To overcome this challenge, BinSight im-
plements several heuristics to automate identifier mapping.

CDRep [39] automates both the detection and repair of
security API misuses for Android apps. CDRep reimple-
ments the design of CryptoLint for vulnerability detection.
To repair vulnerabilities, CDRep leverages seven manually
created patch templates, with each template usable to fix
one misuse pattern.

CryptoTutor [19] helps students locate and repair cryp-
tographic API misuses in Java code. Similar to CDRep,
CryptoTutor applies program slicing and inter-procedural
data flow analysis to locate misuses. Its built-in rules are
also related to the vulnerabilities of CWE-327, CWE-330,
CWE-798, and CWE-326. However, CryptoTutor focuses on
a larger pattern set; in addition to the misuses examined by
CryptoLint, CryptoTutor also checks API misuses that

1) use weak hash functions (e.g., MD5),
2) use weak encryption algorithms (e.g., DES),
3) use weak random number generators (e.g.,

Random(...), and
4) use short-length keys or salts for encryption.

CryptoTutor repairs vulnerabilities by editing abstract syn-
tax trees (ASTs) for code transformation. Once API misuses
are located in the code submitted by a student, CryptoTutor
provides coding feedback to help the student understand
why the program is incorrect.

Crypto Misuse Analyzer (CMA) [40] scans Dalvik byte-
code of Android apps and checks for API misuses related
to CWE-327, CWE-295, CWE-330, CWE-326, and CWE-798.
CMA first uses inter-procedural static analysis to identify
all execution paths that may invoke certain cryptographic
APIs. Based on the analysis result, CMA instruments code
to perform dynamic analysis, log execution profiles, and
record how cryptographic APIs are invoked at runtime.
Finally, CMA matches execution profiles with predefined
API-misuse models, to decide whether any API is misused.

CryptoChecker [41] also detects cryptographic API mis-
uses based on built-in rules. Before hardcoding rules into
CryptoChecker, Paletov et al. first built a rule inference tool
called DiffCode. There are three steps in DiffCode. First, Dif-
fCode mines code changes from GitHub repositories based
on their usage of particular crypto APIs (e.g., SecertKeySpec).
Second, to filter out irrelevant changes from the mined
corpus, DiffCode represents invoked APIs and related pa-
rameter values with directed acyclic graphs (DAGs). By
comparing DAGs, DiffCode extracts API usage changes and
then clusters similar changes to infer API misuse patterns.
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TABLE 2: Overview of existing detectors for security API misuses
Name Availability Input Format Pattern Representation Pattern-Matching Strategy Output

Java JAR APK Built-in Rules Other Intra- Inter- Other Misuse Repair

MalloDroid [12] 3 3 3 3 3
CryptoLint [15] 3 3 3 3
BinSight [38] 3 3 3 3
CDRep [39] 3 3 3 3 3
CryptoTutor [19] 3 3 3 3 3 3
CMA [40] 3 3 3 3 3
CryptoChecker [41] 3 3 - - - 3
Amandroid [42] 3 3 3 3 3
CogniCrypt [18] 3 3 3 3 3 3 3
Hotfixer [43] 3 3 3 3 3 3 3
Fischer et al.’s tool [10] 3 3 3 3 3 3
Xu et al.’s tool [44] 3 3 3 3 3
CryptoGuard [11] 3 3 3 3 3 3
VuRLE [45] 3 3 3 3 3
Vulvet [46] 3 3 3 3 3

AndroBugs [47] 3 3 3 3 3
FindSecBugs [20] 3 3 3 3 3
MobSF [48] 3 3 3 3 3 3 3
SonarQube [21] 3 3 3 3 3
Xanitizer [22] 3 3 3 3 3 3

“-” means the information is not publicly available.

The mined rules are related to CWE-327, CWE-330, CWE-
326, and CWE-798. However, CryptoChecker’s pattern set
is much smaller than that of CryptoTutor. It is unclear what
technique CryptoChecker adopts to match patterns.

Amandroid [42], [50] is a general-purpose static analy-
sis framework, to decide points-to information for all ob-
jects in a flow- and context- sensitive way across Android
app components. This technique seems more accurate than
prior work. As the researchers noted, the event-driven na-
ture and inter-component communication (ICC) of Android
apps make traditional analysis insufficient and imprecise,
and require additional processing to connect the control
flow graphs of some seemingly irrelevant functions. Wei
et al. [42] demonstrated that Amandroid can be easily
extended to find API misuses that adopt ECB mode for
encryption (CWE-327).

CogniCrypt [18] supports developers to properly use
APIs in two ways. First, for some common tasks (e.g.,
data encryption), CogniCrypt generates code from high-
level task descriptions in English. Second, CogniCrypt takes
in rules defined in a domain-specific language (DSL)—
CrySL [27]—to detect API misuses. Each CrySL rule has five
mandatory sections:

(1) OBJECTS declares Java objects;
(2) EVENTS lists all security APIs involved;
(3) ORDER uses a regular expression to define correct

API call sequences;
(4) CONSTRAINTS defines constraints on objects; and
(5) ENSURES defines predicates on the relationship

among objects.

Because CogniCrypt translates CrySL rules into context-
sensitive, flow-sensitive, and demand-driven static analy-
sis, users can extend the tool capability by defining new
rules. For detected API misuses, CogniCrypt offers fixing
guidance (e.g., replacing an insecure parameter value with
a secure one). Its pattern set is related to CWE-327, CWE-
295, CWE-330, CWE-326, CWE-798, and CWE-757.

Hotfixer [43] adopts CogniCrypt to detect API misuses,
and applies fixes at runtime without stopping the program
execution. To dynamically update software, Hotfixer trans-
forms handcrafted software patches into hotfixes that are

usable by Java agents, and checks the program execution
status before applying any patch. For instance, if a method
is running and a redefinition of that method is suggested
as a security patch, then the method’s old implementation
will continue running until the execution finishes. Hotfixer
ensures that only future runs of that method will execute
the new implementation.

Fischer et al.’s tool [10] detects misuses in two ways:
machine learning and clone detection. Specifically, their first
approach uses tf-idf to generate features from source code.
It trains a support vector machine (SVM) with an annotated
dataset of code snippets that use APIs securely or inse-
curely. The trained model predicts whether a code snippet
misuses any security API. Their second approach converts
both known vulnerable Java code and Android apps to the
same representation, i.e., the internal representation (IR) of
WALA [51]—a widely used program analysis framework.
The approach scans Android apps for clones (i.e., similar
code) of the known vulnerable code, by finding isomorphic
subgraphs in IR-based program dependency graphs (PDG).
Both tools focus on misuse patterns related to CWE-327,
CWE-295, CWE-330, CWE-326, CWE-798, and CWE-757.

Xu et al.’s tool [44] is similar to that of Fischer et al., as
it also detects misuses via machine learning. The approach
first analyzes the Dalvik bytecode of APK files to extract all
possible API invocation sequences from Android apps, and
uses CogniCrypt to label secure and insecure call sequences.
With the labeled dataset, the tool trains (1) a Hidden Markov
Model (HMM) to predict how likely a given API sequence
is secure, and (2) an n-gram model to further locate the
misused API(s) in a problematic call sequence. As this tool
adopts CogniCrypt to label training data, the pattern set
it learns overlaps with, but can be no larger than that of
CogniCrypt.

CryptoGuard [11], [52] extends Soot [53], [54]—a widely
used program analysis framework—to statically analyze
Java bytecode. It focuses on vulnerabilities of CWE-327,
CWE-295, CWE-330, CWE-326, CWE-798, and CWE-757. To
achieve high precision rates when detecting vulnerabilities,
CryptoGuard conducts both backward and forward slicing
in a context- and field- sensitive way. However, because
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eight of CryptoGuard’s rules are about the usage of constant
values, naı̈vely applying existing slicing techniques can
falsely report constants that are covered by program slices
but totally irrelevant to security. Therefore, CryptoGuard
defines refinement algorithms to remove false alarms based
on the domain knowledge of cryptography.

VuRLE [45] detects and fixes vulnerabilities. There are
two phases in VuRLE: learning and repair. In Phase I,
given vulnerable programs and corresponding repaired
code, VuRLE first extracts edits by comparing the ASTs of
each 〈vulnerable, repaired〉 code pair; it represents each edit
as a sequence of AST edit operations (e.g., node insertion).
Next, VuRLE clusters similar edits based on the longest
common subsequences (LCSs) between edit operations; for
each cluster, VuRLE generalizes a 〈template, edit〉 pair. Here,
the template abstractly represents a vulnerable code pattern,
while the edit pattern represents the repair. In Phase II,
given a vulnerable program, VuRLE scans code for matches
of any inferred template. For each template match, VuRLE
customizes the corresponding edit pattern, and applies the
customized changes to repair vulnerabilities. Its pattern set
is about CWE-327, CWE-295, CWE-798, and some categories
outside our research scope (e.g., resource leakage).

Vulvet [46] extends Soot to statically analyze the Dalvik
bytecode of Android apps; it detects and fixes cryptographic
API misuses as well as other types of vulnerabilities (e.g.,
ICC-related). The patterns Vulvet focuses on are related to
CWE-327, CWE-295, CWE-330, and CWE-798. Vulvet auto-
matically resolves vulnerabilities by instrumenting patches
to the Jimple code of Android apps, where Jimple is an
internal representation of Soot.

3.2 Tools from Industry or Open Source Communities

We found five tools that are from either industry or open
source communities. None of them has any paper published
to describe the tool design or implementation. Thus, our
descriptions below are based on tool websites, manual code
inspection of open-source tools, and our first-hand user
experience with tools. Most of these tools hardcode mis-
use patterns as built-in rules and conduct inter-procedural
analysis; none of the tools suggests customized repairs.

AndroBugs [47] is an open-source framework to scan
Android apps for vulnerabilities. Among all the vulnera-
bility categories AndroBugs considers, two categories are
within our research scope: CWE-295 and CWE-798. An-
droBugs implements a naı̈ve string-match method, to detect
API misuses that match certain regular expressions (regex).

FindSecBugs [20] is the SpotBugs [55] plugin for se-
curity audits of Java web applications. Here, SpotBugs is
an open-source tool that statically analyzes Java bytecode
for software bugs. FindSecBugs performs inter-procedural
static program analysis to find API misuses related to CWE-
327, CWE-295, CWE-330, CWE-326, CWE-798, and CWE-
757. The misuse patterns in FindSecBugs are hardcoded
as built-in rules; however, the software architecture pro-
vides extensible interfaces for developers to easily add or
remove rules. For each detected vulnerability, FindSecBugs
can provide general guidance on repairs by showing code
examples; it does not suggest concrete repairs applicable to
any specific program context.

MobSF [48] is an open-source, automated, all-in-one
mobile application (Android/iOS/Windows) pen-testing,
manual analysis, and security assessment framework. It per-
forms both static and dynamic analysis to detect a variety
of vulnerabilities. Among the categories listed in Table 1,
MobSF locates API misuses related to CWE-327, CWE-295,
CWE-330, and CWE-798. To identify improper certificate
validation (CWE-295), MobSF hardcodes built-in rules and
performs dynamic program analysis. To reveal other API
misuses, MobSF holds an independent YAML file to repre-
sent misuse patterns with regular expressions (regex), and
conducts regex-based string match.

SonarQube [21] is an open-source tool that conducts
inter-procedural static analysis to detect bugs, code smells,
and security vulnerabilities. SonarQube hardcodes built-in
rules for vulnerabilities of CWE-327, CWE-295, CWE-330,
CWE-326, and CWE-757. For each detected vulnerability,
SonarQube presents general guidance on repairs by show-
ing (1) secure code examples and (2) relevant CWE entries.

Xanitizer [22] is a closed-source commercial tool for the
security audit of Java web applications. We were able to
use Xanitizer by requesting for the user license. According
to our experience with the tool, Xanitizer conducts inter-
procedural static analysis to reveal API misuses of CWE-327,
CWE-295, CWE-330, CWE-326, CWE-798, and CWE-757. It
scans not only Java code and JAR files, but also configu-
ration files and templates for rendering the HTML output.
For each detected vulnerability, Xanitizer offers a high-level
repair suggestion (e.g., “specify crypto-provider”) together
with relevant CWE entries.

Finding 1: For RQ1, existing tools are different in terms
of their availability, input formats, pattern representations,
pattern-matching strategies, and outputs. Most tools represent
patterns as built-in rules, conduct inter-procedural analysis,
and report detected API misuses as outputs.

4 EMPIRICAL COMPARISON OF TOOLS

To empirically compare the tools listed in Table 2, we
first tried to download all tools and deploy them to our
desktop, and then applied the successfully deployed ones to
existing datasets. The configuration of our desktop includes
(1) OS: Linux Mint 20, (2) CPU: i7-8700, (3) memory size:
32 GB, and (4) JVM heap size: 30 GB. In this section, we
will first introduce the experimented tools (Section 4.1) and
evaluation datasets (Section 4.2). Then we will explain our
evaluation metrics (Section 4.3) and results (Section 4.4).

4.1 Tools Used in Experiments

Within the tools listed in Table 2, nine tools are unavailable
and do not support any free trial. Although BinSight is
open-source, we could not compile or run it, neither did
the authors respond to our email requests. Thus, we still
consider BinSight unavailable. Among the remaining 10
tools, MalloDroid, Amandroid, AndroBugs, and MobSF are
only applicable to Android apps. Because our evaluation
datasets include only six Android apps (see Section 4.2),
which are insufficient to evaluate any tool, we decided not
to experiment with these four tools. Finally, we have six
tools usable in the empirical comparison of tools’ detection
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TABLE 3: The API misuse patterns covered by each tool
Java Type API CogniCrypt CryptoGuard CryptoTutor FindSecBugs SonarQube Xanitizer

Cipher 3 3 3 3 3 3
HostnameVerifier 3 3 3 3
IvParameterSepc 3 3 3 3 3 3
KeyPairGenerator 3 3 3 3 3
KeyStore 3 3 3 3
MessageDigest 3 3 3 3 3 3
PBEKeySpec 3 3 3 3 3
PBEParameterSpec 3 3 3 3 3
SecrectKeyFactory 3 3 3
SecrectKeySpec 3 3 3 3 3
SecureRandom 3 3 3 3 3 3
SSLContext 3 3 3 3 3
TrustManager 3 3 3 3 3 3

“3” means a Java class/interface has at least one method-API misuse pattern covered by a tool

TABLE 4: The tool versions adopted
Tool Version or Commit Id on Github

CogniCrypt 2.7.1
CryptoGuard Release 04.05.03 2020-11-25-02-42
CryptoTutor v202107
FindSecBugs 1.10.1
SonarQube 8.5.1.38104
Xanitizer 5.1.3

capability: CogniCrypt, CryptoGuard, CryptoTutor, Find-
SecBugs, SonarQube, and Xanitizer. The first three tools are
from academia, while the last three come from industry.
Table 4 shows the tool versions we adopted. As shown
in Table 3, among the six tools, Xanitizer covers the most
misuse patterns while CryptoTutor covers the fewest.

4.2 Benchmark Datasets
To evaluate the effectiveness of tools, we searched exten-
sively online for third-party benchmarks that label pro-
grams based on their correct or incorrect usage of security
APIs. We found three datasets:

(1) CryptoBench [23], [56] includes 171 handcrafted pro-
grams that use the APIs of JCA and JSSE. In particular, 136
of the programs have cryptographic API misuses, while the
other 35 programs use APIs correctly. To precisely compre-
hend API usage, a tool needs to do intra-procedural analysis
for 40 programs, and perform inter-procedural analysis for
the other 131 programs. Among the 136 vulnerable pro-
grams, only 129 programs contain the API misuses we focus
on (see Table 1).

(2) MUBench [24], [57] is a benchmark of API-misuse
detectors. Among the different versions of MUBench, we
downloaded a recent version created in 2019 [58], which
contains instances of cryptographic API misuses collected
from 62 Java programs. These programs include 6 Android
apps and 56 non-Android applications. We managed to
compile 37 out of the 56 Java applications into JAR files,
which correspond to 149 labeled instances of API misuses.
Therefore, we used these 149 instances as ground truth in
our evaluation.

(3) OWASP Benchmark [25], [59] is a Java test suite
designed to evaluate the effectiveness of automated vul-
nerability detection. It gathers the vulnerabilities recently
reported on CWE [28], and has been recommended as an
evaluation dataset for Application Security Testing tools.
We downloaded the latest version (v1.2) of this benchmark,
which includes 2,740 Java programs. Because not all pro-
grams involve security APIs, we focused on the data of three

TABLE 5: The security APIs covered by each benchmark

Java Type API CryptoBench MUBench OWASP
Benchmark

Cipher 3 3 3
HostnameVerifier 3
IvParameterSepc 3 3
KeyPairGenerator 3
KeyStore 3
MessageDigest 3 3 3
PBEKeySpec 3
PBEParameterSpec 3 3
SecrectKeyFactory 3
SecrectKeySpec 3 3
SecureRandom 3 3
SSLContext
TrustManager 3

“3” means that a Java class/interface has at least one method API called by
a program benchmark.

categories: weak cryptography, weak hashing, and weak
randomness. In this way, our experiment includes 975 pro-
grams from the original dataset, containing 477 programs
with labeled misuses of security APIs and 498 programs
with correct uses.

Actually not every benchmark covers all the API misuses
summarized by prior work. To ensure rigorous evaluation
of tools, we manually inspected the security APIs labeled in
each benchmark. We present the mapping between bench-
marks and security APIs in Table 5. As shown in the table,
CryptoBench covers the usage of most APIs (i.e., 11 Java
types). The data of OWASP Benchmarks is only relevant to
three Java classes: Cipher, MessageDigest, and SecureRandom. We
chose to use existing benchmark datasets instead of creating
new ones for two reasons. First, these benchmarks are public
and were manually crafted by different groups of people,
which makes our empirical comparison representative, and
easy to reproduce by other people. Second, some of the
benchmarks (e.g., OWASP Benchmark and MUBench) are
widely accepted and have great industrial impacts, which
enables our empirical results to better characterize the state-
of-the-art tools and inspire future research.

4.3 Evaluation Metrics

We used four metrics to measure tool effectiveness: preci-
sion, recall, F-score, and runtime overhead.

Precision (P) measures among all reported misuses, how
many of them are actual misuses (i.e., true positives):

P =
# of true misuses detected
Total # of detected misuses

. (1)
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TABLE 6: The precision, recall, and F-score of tools measured based on CryptoBench (%)

Java Type API CogniCrypt CryptoGuard CryptoTutor FindSecBugs SonarQube Xanitizer
P R F P R F P R F P R F P R F P R F

Cipher (36) 85 78 81 85 97 91 67 22 33 62 36 46 43 17 24 83 83 83
HostnameVerifier (1) - 0 - - 0 - - 0 - 100 100 100 50 100 67 100 100 100
IvParameterSepc (8) 71 63 67 88 88 88 0 0 - 80 100 89 - 0 - 89 100 94
KeyPairGenerator (5) 83 100 91 80 80 80 - 0 - - 0 - - 0 - 83 100 91
KeyStore (7) 75 86 80 88 100 93 - 0 - 100 29 44 - 0 - 100 29 44
MessageDigest (24) 94 67 78 86 100 92 67 26 36 67 33 44 80 83 82 83 83 83
PBEKeySpec (8) 63 63 63 86 75 80 - 0 - 100 25 40 100 50 67 73 100 84
PBEParameterSpec (14) 77 71 74 85 79 81 67 14 24 - 0 - - 0 - - 0 -
SecrectKeySpec (8) 78 88 82 100 38 55 50 13 20 67 25 36 - 0 - 50 13 20
SecureRandom (15) 100 7 13 86 80 83 50 13 21 100 7 13 100 60 75 - 0 -
TrustManager (3) - 0 - - 0 - - 0 - 100 100 100 100 100 100 100 100 100
Overall (129) 81 64 72 86 84 85 61 15 24 73 31 43 75 33 46 83 60 70
”-” means that a tool does not report any misuse for certain Java type APIs, so the related precision and F score values cannot be calculated.

Given a reported set of misuses S1, suppose that the labeled
set of misuses (i.e., ground truth) is S2. Theoretically, we can
automatically evaluate precision based on the intersection
between two sets, i.e., P = |S1 ∩ S2|/|S1|. Such automatic
evaluation requires the ground truth (i.e., S2) to be com-
plete. Namely, the labeled set of misuses in each benchmark
should cover all actual misuses existing in codebases.

Because CryptoBench and OWASP are manually crafted
datasets with injected API misuses, their ground truth sets
are complete. However, MUBench consists of software from
the real world, and the labeled set was crafted based
on manual inspection or tool results. The ground truth
of MUBench is incomplete and thus unusable for auto-
matic evaluation. To correctly compute precision of tools
on MUBench, we manually inspected all reported misuses
and decided whether they were true positives based on our
security knowledge. Namely, given a reported API misuse,
if our manual inspection of the program context confirms
the misuse, we consider the report to be a true positive;
otherwise, it is a false positive.

Recall (R) measures among all known API misuses in
benchmarks, how many of them are detected by a tool:

R =
# of true misuses detected

Total # of known true misuses
. (2)

Given a reported set of misuses S1, suppose that the labeled
set of misuses is S2. We evaluated recall using |S1∩S2|/|S2|.

F-score (F) is the harmonic mean of P and R, to reflect a
trade-off between the two metrics:

F =
2× P ×R

P +R
. (3)

F varies within [0, 1]. The higher F scores are desirable, be-
cause they demonstrate better trade-offs between precision
and recall. Suppose that we have 100 known API misuses
in a codebase; a tool reports 120 misuse instances, with 80
of them being true misuses. Then P = 80/120 = 67%, R =
80/100 = 80%, F = 2× 80%× 67%/(80% + 67%) = 73%.

Runtime Overhead measures the time cost of each tool.
The lower overhead, the better.

4.4 Results Based on Benchmarks

Table 7 shows the measured runtime overheads. Within
the six tools, Xanitizer spent the most time when being
applied to CryptoBench and OWASP (i.e., 95 and 490,729
seconds); CryptoGuard got the highest time cost when
being applied to MUBench (i.e., 1,918 seconds). Two

TABLE 7: Time cost comparison between tools (seconds)
Tool CryptoBench MUBench OWASP
CogniCrypt 7 133 10,773
CryptoGuard 11 1,918 9,045
CryptoTutor 22 530 -*
FindSecBugs 4 59 20,352
SonarQube 28 387 2,188
Xanitizer 95 724 490,729
* CryptoTutor does does not run successfully with the
OWASP benchmark.

reasons can explain the observed time differences among
tools. First, these tools adopt distinct static analysis
techniques (e.g., inter-procedural vs. intra-procedural)
to match patterns, and some techniques are more time-
consuming than others. Second, tools focus on different
vulnerability patterns, although some patterns are irrelevant
to cryptographic APIs. Since we were unable to revise tools
to disable all patterns irrelevant to our investigation,
the measured costs are higher than the actual time costs
incurred by automatic detection of cryptographic APIs.

Finding 2 (for RQ2): The measured time costs imply that
given hundreds of programs to scan, the experimented tools
usually respond within six hours (18,000 seconds).

In terms of detection capability, CryptoGuard achieved
the highest F score (85%) among all tools when being
applied to CryptoBench. Meanwhile, Xanitizer acquired the
highest F scores (i.e., 72% and 100%) when being applied
to MUBench and OWASP datasets. In the following sub-
sections, we will further discuss the precision, recall, and
F-score of tools on each dataset.

4.4.1 CryptoBench

Table 6 shows the evaluation results of different tools on
CryptoBench. Each row in the table corresponds to API
misuses related to one Java type (e.g., Cipher); each number
mentioned in the first column (e.g., 36) counts the labeled
cryptographic API misuse instances for a Java type. Among
the 11 Java types covered by CryptoBench, CryptoTutor
and SonarQube separately reported API misuses for 6 Java
types; the other tools reported API misuses related to 9 Java
types. There are only two Java types whose API misuses are
commonly detected by all tools: Cipher and MessageDigest;
CryptoGuard consistently outperformed the others when
handling these common cases. Our observation indicates
that it is promising to improve vulnerability detection by
combining the results of different tools, although we have
not seen any hybrid approach built in this way.
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TABLE 8: The precision, recall, and F-score of tools measured based on MUBench (%)

Java Type API CogniCrypt CryptoGuard FindSecBugs SonarQube Xanitizer
P R F P R F P R F P R F P R F

Cipher (50) 92 66 77 100 68 81 100 66 80 100 76 86 86 78 82
IvParameterSpec (13) 88 62 72 100 31 47 69 46 55 - 0 - 65 46 54
MessageDigest (31) 89 58 70 100 81 89 77 68 72 86 55 67 85 77 81
PBEParameterSpec (7) 79 100 88 100 100 100 - 0 - 100 29 44 100 57 73
SecretKeyFactory (9) 84 100 91 - 0 - - 0 - - 0 - 82 100 90
SecretKeySpec (39) 48 62 54 100 8 14 100 3 5 - 0 - 100 28 44
Overall (149) 77 66 71 100 49 66 84 41 55 93 38 54 85 62 72

TABLE 9: The precision, recall, and F-score of tools measured based on OWASP Benchmark (%)

Java Type API CogniCrypt CryptoGuard FindSecBugs SonarQube Xanitizer
P R F P R F P R F P R F P R F

Cipher (130) 83 100 91 83 100 91 100 100 100 83 100 91 100 100 100
MessageDigest (129) 100 69 82 100 69 82 100 69 82 - 0 - 100 100 100
SecureRandom (218) - 0 - 100 100 100 100 100 100 - 0 - 100 100 100
Overall (477) 89 46 61 94 92 93 100 92 96 83 27 41 100 100 100

1. public class BrokenCryptoABICase12 {
2. public static void method2(String c) throws    

NoSuchPaddingException, NoSuchAlgorithmException, 
InvalidKeyException {

3. String cryptoAlgo = c;
4. method1(cryptoAlgo);
5.   }
6. public static void method1(String crypto) throws 

NoSuchPaddingException, NoSuchAlgorithmException, 
InvalidKeyException {

7. KeyGenerator keyGen=KeyGenerator.getInstance(crypto);
8. SecretKey key = keyGen.generateKey();
9. Cipher cipher = Cipher.getInstance(crypto);
10. cipher.init(Cipher.ENCRYPT_MODE, key); 
11.  }
12. public static void main (String [] args) throws 

NoSuchPaddingException, NoSuchAlgorithmException, 
InvalidKeyException {

13. String crypto = "Blowfish";
14. method2(crypto); 
15.  } 
16.} Data-dependency

Legend

Fig. 1: A program in which SonarQube and FindSecBugs
could not find the API misuse

The overall F-score comparison among tools is
CryptoGuard>CogniCrypt>Xanitizer>SonarQube>FindSe-
cBugs>CryptoTutor. CryptoTutor obtained much lower
measurements than other tools for two reasons. First, it
has implementation issues, which prevented the tool from
correctly identifying API misuses in many cases. Second,
CryptoTutor scans code for fewer patterns than other tools,
and could not reveal the API misuses beyond its pattern
set. SonarQube and FindSecBugs worked worse than
CogniCrypt, CryptoGuard, and Xanitizer for two reasons.
First, SonarQube and FindSecBugs have smaller pattern
sets. Second, both tools apply intra-procedural instead of
inter-procedural analysis to locate some API misuses (e.g.,
using constant IV values), although the inter-procedural
program analysis is more desirable. As CryptoBench has
many programs that require sophisticated inter-procedural
analysis, neither SonarQube nor FindSecBugs handled well
those programs.

Fig. 1 shows a program whose API misuse was not
detected by either SonarQube or FindSecBugs. On line 9,
Cipher.getInstance(...) is invoked with parameter crypto,
whose actual value “Blowfish” implies the adoption of a
provenly insecure algorithm. To facilitate understanding,
in Fig. 1, we underlined all statements involved in the
backward slice of that API invocation (i.e., lines 2–4, 6,
9, 13–14); we also marked the data-dependencies between

statements with arrowed blue curves. As implied by the
data dependencies, a tool has to conduct inter-procedural
backward slicing in order to reveal the API misuse. Never-
theless, SonarQube and FindSecBugs failed to do that.

4.4.2 MUBench

We applied five tools (except CryptoTutor) to MUBench,
because CryptoTutor is quite unique. When running tools
other than CryptoTutor, we managed to launch tools via
commands, apply each tool to every program benchmark,
and automatically process the output text (or files) to
compute tools’ P/R/F values. However, CryptoTutor is an
interactive coding assistance tool that is delivered as an
Eclipse plugin. To launch the tool, we have to first launch
a new instance of Eclipse, import all programs into the
IDE for each benchmark, manually right-click all programs
to launch CryptoTutor, read outputs in GUI panes, and
manually inspect subject programs as needed to compute
P/R/F values. Such frequent manual interference can be
extremely time-consuming, when the subject programs are
large and CryptoTutor does not output the code locations of
identified API misuses. As we could not afford the manual
effort, we did not apply CryptoTutor to MUBench.

Our results are shown in Table 8. We observed similar
phenomena in this table and Table 6. Among the six Java
types covered by MUBench, SonarQube revealed API
misuses for the fewest Java types (i.e., three). Only two
types have API misuses commonly detected by all tools:
Cipher and MessageDigest. SonarQube achieved the highest
F score (i.e., 86%) for misuses of Cipher’s method APIs,
and CryptoGuard achieved the highest F score (i.e., 89%)
for MessageDigest-related misuses. No tool consistently
outperformed others. The overall F-score comparison is
Xanitizer>CogniCrypt>CryptoGuard>FindSecBugs>Sona-
rQube. FindSecBugs and SonarQube obtained much lower
F scores than CogniCrypt, CryptoGuard, and Xanitizer.

4.4.3 OWASP

As shown in Table 9, OWASP Benchmark covers
a lot fewer Java types than the two benchmarks.
Among the three Java types covered, SonarQube only
detected API misuses for Cipher. Xanitizer worked
perfectly to report misuses without any incorrect
result. The overall F-score comparison among tools is
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In benchmark.properties,
1.   cryptoAlg1=DES/ECB/PKCS5Padding
2.   cryptoAlg2=AES/CCM/NoPadding
3.   …
In Properties.java,
4.   …
5.   public String getProperty(String var1, String var2) {
6.     String var3 = this.getProperty(var1);
7. return var3 == null ? var2 : var3;
8.   }
9.   …
In BenchmarkTest00358.java,
10.  …
11.  java.util.Properties benchmarkprops = new  

java.util.Properties();
12. benchmarkprops.load(this.getClass().getClassLoader().get

ResourceAsStream("benchmark.properties"));
13. String algorithm=benchmarkprops.getProperty("cryptoAlg2",

"AES/ECB/PKCS5Padding");
14. javax.crypto.Cipher c  

= javax.crypto.Cipher.getInstance(algorithm);
15.  …

Data-dependency

Legend

Fig. 2: A program that is falsely reported to be vulnerable
by CryptoGuard and CogniCrypt

Xanitizer>FindSecBugs>CryptoGuard>CogniCrypt>Sona-
rQube. This comparison seems contradictory with what
we observed in Tables 6 and 8. Namely, compared with
CryptoGuard and CogniCrypt, FindSecBugs worked better
on this dataset but worse on the other datasets.

To understand the contradiction, we further inspected
the codebases of FindSecBugs and OWASP benchmark.
We realized that in the benchmark, there are mul-
tiple programs having the same code underlined in
Fig. 2. The common code calls Cipher.getInstance(...)

with parameter algorithm, whose actual string value
“AES/CCM/NoPadding” implies the adoption of a secure al-
gorithm. However, CryptoGuard and CogniCrypt are not
rigorous enough to determine that algorithm does not
hold the value of “AES/ECB/PKCS5Padding”. Consequently, they
falsely inferred that “AES/ECB/PKCS5Padding” is passed to
Cipher.getInstance(...), and reported API misuses. In com-
parison, FindSecBugs nicely handled these programs and
did not report any false positive.

Finding 3 (for RQ2): No tool consistently worked best.
However, CogniCrypt, CryptoGuard, and Xanitizer always
outperformed SonarQube, probably due to their sophisticated
inter-procedural analysis and larger pattern sets.

Among the experimented tools, we observed the highest
F-score that they can achieve on CryptoBench is 85% (by
CryptoGuard); the highest measurement on MUBench is
72% (by Xanitizer). These numbers imply that there is still
improvement space for new approaches to detect misuses
with higher F-scores. Additionally, we noticed that each
adopted benchmark only covers at most 11 of the 13 Java
types frequently involved in cryptographic API misuses.
It means that to better assess the effectiveness of different
tools, we also need new benchmarks that cover various API
misuses related to all Java types.

5 USER STUDY

To understand how existing tools help with developers’
secure coding practices, we performed a user study. We
reported cryptographic API misuses found in open-source
projects to owner developers, to seek for their feedback.

TABLE 10: Summary of developers’ responses to 57 PRs

Java Type API PRs filed Developers’ Feedback

Positive Negative No
Response

Cipher 7 5 2 0
HostnameVerifier 2 1 1 0
IvParameterSepc 1 1 0 0
KeyPairGenerator 3 1 1 1
KeyStore 7 0 6 1
MessageDigest 7 1 6 0
PBEParameterSpec 5 4 0 1
SecretKeyFactory 3 0 1 2
SecretKeySpec 4 0 2 2
SecureRandom 7 0 5 2
SSLContext 4 1 2 1
TrustManager 7 3 4 0
Total 57 17 30 10

Specifically, we ranked all Apache projects on GitHub in the
descending order of their popularity (i.e., star counts). We
then scanned the source code of top-ranked projects to find
200 projects that use any of the 13 Java types listed in Table 1.
We chose to explore Apache projects because (1) they are
usually well maintained, and (2) the project developers are
experienced and often respond to pull requests (PRs).

Next, we applied all 5 experimented tools to the 200
Apache project to reveal cryptographic API misuses. Be-
cause the vulnerability reports by different tools contain true
API misuses, together with false ones and other security
issues out of scope, we needed to manually refine those
reports before contacting developers for their feedback. To
reduce our manual effort, in each tool’s outputs, we sampled
15 projects. As we used 5 tools, in total we sampled 75
projects based on the reported vulnerabilities.

According to our manual analysis, the tools reported
416 true positives among the sampled projects. As it is
infeasible for developers to respond to all instances, we
further sampled 57 instances by taking a couple of steps.
In Step 1, we classified all instances based on the Java types
they are associated with. In Step 2, we randomly chose seven
unique instances for each Java type to file PRs, in order
to get developers’ feedback on different kinds of misuses.
When there are insufficient instances reported for any Java
type (e.g., IvParameterSpec), we included all instances. In each
PR, we specified (a) the code location of an instance, (b) the
security implication, (c) one or two CWE entries showing
the potential exploits, and (d) tool-generated guidance on
fixes. When developers asked us to file issue reports, we also
created issues to describe the above-mentioned information.

Based on our interactions with developers so far, we
have classified developers’ opinions into three categories:
positive feedback, negative feedback, and no response.
Surprisingly, developers rejected 53% of PRs (i.e., 30/57),
agreed with us for 30% of PRs (i.e., 17/57), and did not
respond for 18% of PRs (i.e., 10/57). PRs related to Cipher

got the highest positive rate (i.e., 5/7). However, PRs re-
lated to another four Java types received zero positive
response, including KeyStore, SecretKeyFactory, SecretKeySpec,
and SecureRandom. Such comparison implies that developers
considered certain vulnerability reports to be more impor-
tant than others.
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(a) An incomplete fixing suggestion by existing tools
1.   public static String encrypt(String text, SecretKey key) {
2.     …
3. - Cipher cipher = Cipher.getInstance(“AES/ECB/PKCS5PADDING”);
4. +   Cipher cipher = Cipher.getInstance(“AES/CBC/PKCS5PADDING”);
5.     cipher.init(Cipher.ENCRYPT_MODE, key); 
6.     … }

(b) The complete fixing suggestion that developers need
1. + private static IvParameterSpec iv = genIV();  
2.   public static String encrypt(String text, SecretKey key) {
3.     …
4. - Cipher cipher = Cipher.getInstance(“AES/ECB/PKCS5PADDING”);
5. +   Cipher cipher = Cipher.getInstance(“AES/CBC/PKCS5PADDING”);
6. - cipher.init(Cipher.ENCRYPT_MODE, key); 
7. +   cipher.init(Cipher.ENCRYPT_MODE, key, iv);
8.     … }
9. + public static IvParameterSpec genIV ( ) { 
10.+   SecureRandom se = new SecureRandom ( ) ; 
11.+   byte[] raw = new byte[16]; 
12.+   se.nextBytes(raw);
13.+   IvParameterSpec iv = new IvParameterSpec(raw);
14.+   return iv;
15.+ }

Fig. 3: The incomplete and complete fixing suggestions for
the misuse Cipher.getInstance("AES/ECB/PKCS5PADDING")

Finding 4 (for RQ3): Developers would like to address the
security issues mentioned in 17 PRs, but rejected 30 PRs.
This phenomenon implies that developers are usually negative
towards the reported security-API misuses.

Among the 17 PRs with positive feedback, developers
finally accepted 9 PRs. They mentioned two challenges
posed by the other eight PRs:

Challenge 1. Incomplete fixing suggestion. In four
PRs, tool-generated guidance does not offer all needed
information for repairs. For instance, a project invokes
Cipher.getInstance("AES/ECB/PKCS5PADDING"), which misuse
was located by tools and developers were recommended to
replace the parameter with "AES/CBC/PKCS5PADDING". However,
naı̈vely applying this edit can cause a runtime error, because
the substitute parameter requires for an additional initializa-
tion vector (IV) parameter when the cipher is used for en-
cryption/decryption. With more details, Fig. 3 contrasts an
incomplete fixing suggestion implied by existing tools and
the complete suggestion that developers need. As reflected
by Fig. 3 (b), when replacing the insecure parameter value
with a secure one, developers must remember to also update
a related API call cipher.init(...) (lines 6–7) and create an
IV parameter for that updated call (line 1 and lines 9–15).

As current tools do not guarantee the comprehensive-
ness or completeness of their coding suggestions, develop-
ers hesitate to modify code based on the partial information.

Challenge 2. Complex repair procedures. Some develop-
ers concurred with the revealed vulnerabilities in six PRs,
but could not cope with the complexity of secure solutions.
For instance, when implementing TrustManager, developers
understood that they should not blindly trust all clients
and servers, neither should they have empty implementa-
tion for the interface methods checkClientTrusted(...) and
checkServerTrusted(...). However, to remove the vulnerabil-
ity, they have to not only revise code in order to check the
certificates of both clients and servers, but also download
certificate files to local machines and properly configure
a set of local files. This process is challenging and time-
consuming, and developers have almost zero tool assistance

for non-code artifact configuration.
Finding 5 (for RQ3): For 8 PRs, developers were willing to
address the reported vulnerabilities but could not do that. They
need tools to provide more detailed suggestions on repairing
edits and non-code artifact configuration.

Developers rejected 30 PRs for follwing reasons:

Reason 1. No exploit demo. For four PRs, developers
do not trust the described API misuses or related secu-
rity implications; they required actual security attacks to
demonstrate the security exploit. Particularly in one PR, we
pinpointed the insufficient key length of an RSA key pair,
provided guidance on fixes, and included CWE-327 [60] as
a reference. However, developers still need more convincing
reasons before accepting the PR. They replied, “we were
unable to identify any security impact. As such, this has been
marked as Not Applicable. If you still believe this to be valid,
please submit a new report which includes detailed information
demonstrating and exploiting the security impact for this issue”.

Reason 2. False positives without actual security im-
pact. Among the 26 PRs, developers believed that the re-
ported vulnerabilities in 10 PRs exist only in outdated code
(i.e., archived files or repositories), or in test suites that
will not be included into the released software products. As
the reported vulnerabilities will not influence their software
products, developers do not want to fix the reported mis-
uses. For example, some TrustManager implementation was
intentionally designed to trust all incoming connections in
test code; developers mentioned that they understood the
listed concerns in PRs. However, they have two reasons not
to fix the reported issues: (1) all these test files will not be
shipped with the projects; (2) the trust-all mechanism was
implemented on purpose.

For the remaining 16 PRs, developers considered the
reported vulnerabilities to be totally irrelevant, as the API
misuses are not located in security-sensitive software im-
plementation. 11 of these PRs are about the usage of
MessageDigest and Random. Although tools consider “MD5”
and “SHA-1” as insecure parameters to use when calling
MessageDigest.getInstance(...), developers totally disagreed
on that. They defended that in their circumstances, these
APIs were called not for cryptographic hashing or signature
requests; instead, the APIs were used only to generate
checksums for data integrity checks. Thus, they do not
believe the usage of MD5 or SHA-1 to be security-sensitive.

Listing 4: A scenario where MD5 is irrelevant to security [61]
1 publ ic MD5Function ( L is t<Expression> ch i ldren ) throws

SQLException {
2 super ( ch i ldren ) ;
3 t r y {
4 messageDigest = MessageDigest . g e t I n s t a n c e (”MD5”) ;
5 } catch ( NoSuchAlgorithmException e ) {
6 throw new RuntimeException ( e ) ;
7 }
8 }

Listing 4 shows a scenario where MD5 is used to gener-
ate message digests [61]. Concerning the code, developers
explained, “From a cursory check through Phoenix code, I see
two uses of MD5: 1. An ‘MD5’ SQL function that allows users to
generate MD5 fingerprints of columns. 2. To compare columns of
primary and index tables against each other in the index scrutiny
tool. Neither of these needs a cryptographic hash”.
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Similarly, for Random, although tools consider the API
to be a cryptographically weak random value generator
and consistently suggest SecureRandom as a secure substitute,
developers disagreed. For instance, the code in Listing 5
uses Random to randomly pick an endpoint as the target for
gossip (lines 18–22). The developers responded “The gossiper
does not use any random calls for cryptography”. This response
indicates that developers only used randomly generated
values for purposes irrelevant to cryptography, so they did
not believe that their API usage is vulnerable.

Listing 5: A case where Random is irrelevant to security [62]
1 publ ic c l a s s Gossiper implements

I F a i l u r e D e t e c t i o n E v e n t L i s t e n e r , GossiperMBean
2 {
3 p r i v a t e f i n a l Random random = new Random ( ) ;
4 . . .
5 /**
6 * Returns true i f the chosen t a r g e t was a l s o a seed .

Fa l se otherwise
7 *
8 * @param message
9 * @param epSet a s e t of endpoint from which a random

endpoint i s chosen .
10 * @return true i f the chosen endpoint i s a l s o a seed .
11 */
12 p r i v a t e boolean sendGossip ( Message<GossipDigestSyn>

message , Set<InetAddressAndPort> epSet ) {
13 Lis t<InetAddressAndPort> l iveEndpoints =

ImmutableList . copyOf ( epSet ) ;
14 i n t s i z e = l iveEndpoints . s i z e ( ) ;
15 i f ( s i z e < 1)
16 return f a l s e ;
17 /* Generate a random number from 0 −> s i z e */
18 i n t index = ( s i z e == 1) ? 0 : random . n e x t I n t ( s i z e ) ;
19 InetAddressAndPort to = l iveEndpoints . get ( index ) ;
20 . . .
21 boolean isSeed = seeds . conta ins ( to ) ;
22 Goss iperDiagnost ics . sendGossipDigestSyn ( t h i s , to ) ;
23 re turn isSeed ;
24 }
25 }

Finding 6 (for RQ3): Developers rejected 30 PRs because
they disagreed upon the criteria tools adopted to recognize
vulnerabilities. They need tools to demonstrate security exploits
of vulnerabilities, and to skip issues located in test cases,
archived code, and security-irrelevant context.

6 THREATS TO VALIDITY

Threats to External Validity: Our empirical findings may be
limited to the misuse patterns we focused on, the tools we
experimented with, the datasets used, and the developers
who responded to our PRs. To mitigate this limitation,
we intentionally included the misuse patterns frequently
mentioned in literature, ran as many tools as possible,
randomly sampled the most popular 200 Apache projects,
and proactively discussed with developers on filed PRs.
In the future, we will include more patterns, expand our
datasets, and file more PRs.

Threats to Construct Validity: CryptoBench and OWASP
Benchmark solely have crafted code with injected API mis-
use instances; they may not represent actual API misuses
in real-world software. MUBench contains cryptographic
API misuses in open-source programs; however, the ground
truth of labeled misuses seems incomplete, and they may
not represent API misuses in closed-source software. There-
fore, our tool evaluation results may not reflect these tools’
actual effectiveness in the real world. In the future, we will

construct more comprehensive benchmarks using more real-
world programs.

Threats to Internal Validity: In the user study, we manually
checked tools’ outputs, removed false alarms, and only
sampled true misuses to file PRs. It is possible that our
manual analysis is subject to human bias. To mitigate the
problem, we had two authors inspect each sampled in-
stance. In this way, we ensured that every filed PR contains
a true misuse based on the pattern set defined in literature;
when developers considered any PRs to be false positives,
it indicates the discrepancy between developers’ belief and
research literature.

7 RECOMMENDATIONS ON FUTURE TOOLS

Our work compares existing tools and reveals the gap be-
tween tools’ capabilities and developers’ expectations. Our
findings lead us to give the following recommendations.

Improve the F-score and relevance of misuse detection.
Tool developers can improve over the state-of-the-art de-
tectors in three ways: (1) to increase the accuracy of inter-
procedural program analysis, (2) to skip vulnerabilities in
test or outdated code, and (3) to perform context-aware
analysis that examines API usage only inside the imple-
mentation of security functionalities. Especially for (3), new
tools may need to characterize program context by locating
cryptographic API usage, tracking the propagation of any
value produced by those API calls, and deciding whether
those value propagations are related to any security concept
(e.g., encryption).

Provide detailed and customized fixing suggestions. To
persuade developers into removing detected API misuses,
it is important to provide actionable suggestions on how
to correctly use those APIs in developers’ circumstances.
Developers found existing repair guidance to be insufficient.
Therefore, to better help developers, we still need tools to
suggest both code solutions and related non-code configu-
rations. Each suggested code solution should be complete:
it not only replaces problematic API calls with correct ones,
but also adjusts related code for correct program syntax
and semantics. Each non-code configuration should be clear
enough for developers to follow in order to properly manip-
ulate their local file system.

Automate project-specific exploit generation. To help
developers better diagnose the vulnerabilities in their pro-
grams, future tools can generate hacking code and provide
the recipe for successful attacks. In this way, developers
can gain first-hand experience of security attacks, view their
projects’ security issues from a different perspective, deepen
their understanding of secure coding, and further improve
their cryptographic API usage in the future.

8 RELATED WORK

Several studies are relevant to our work [63]–[67]. For in-
stance, Gao et al. applied CogniCrypt to different versions
of Android apps; they observed that app developers are
generally unaware of cryptographic API misuses and hence
usually do not fix such issues [65]. Gao et al. also performed
another empirical study on the evolution of Android app
vulnerabilities [67]. The researchers found that (1) most
vulnerabilities could survive at least three app updates; (2)
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part of third-party libraries were the major contributors of
most vulnerabilities; (3) all kinds of vulnerabilities were
reintroduced by developers, while encryption-related ones
were reintroduced most often; (4) some vulnerabilities may
foreshadow malware. Our study is different from both stud-
ies, as it compares tools that automatically detect crypto-
graphic API misuses, and investigates developers’ feedback
on tool outputs.

Amann et al. [64] did a systematic evaluation of static
API-misuse detectors. They qualitatively compared 12 exist-
ing detectors. They also applied four of the studied tools to
MUBench, to evaluate detection capabilities and analyze the
root causes for low precision and recall. However, none of
the studied tools focus on cryptographic API misuses.

Oyetoyan et al. [63] studied static application security
testing (SAST) tools and explored developers’ opinions on
those tools. The researchers applied five open-source tools
(i.e., SonarQube, FindSecBugs, Lapse+ [68], JLint [69], and
FindBugs [70]) and a commercial tool to two program
benchmarks: OWASP Benchmark and NIST Test Suite [71].
They also interviewed six developers to understand the de-
sired features in SAST tools. They reported similar findings
to ours, including (1) one tool is not enough to cover all
weakness categories and (2) the capability of current tools
is generally low. Our research is different in two aspects.
First, we focused on cryptographic API misuses; Oyetoyan
et al. focused on 13 weakness categories (e.g., code quality),
many of which are irrelevant to security. Second, our user
study with developers is more rigorous and representative.
We interacted with more developers (47 vs. 6) on concrete
API misuses and general repair suggestions.

Tupsamudre et al. [66] surveyed four SAST tools (Find-
SecBugs, SonarQube, CryptoGuard, and CogniCrypt) to ex-
plore (1) how tools detect password storage vulnerabilities,
and (2) whether the tool-generated fixes comply with the
guidelines by OWASP or NIST. The researchers found that
none of the tools covered all vulnerabilities related to pass-
word storage, and tools’ suggestions are either imprecise or
inconsistent with the latest guidelines. They also did a study
with eight developers, asking each developer to replace in-
secure SHA-1 based password storage implementation with
the PBKDF2 solution suggested by tools. The results show
that, in the absence of examples, developers chose insecure
values for PBKDF2 parameters (salt, iteration count, key
length). Thus, although the usage of PBKDF2 matches tools’
suggestions, the resulting password storage code may be
insecure in practice.

Our research corroborates the findings mentioned in
Tupsamudre et al.’s work but is different in two ways. First,
we studied more tools, conducted more experiments, and
examined more API-misuse patterns; thus, our work has a
wider and deeper scope. Second, there are more participants
in our user study (47 vs. 8); they provided feedback on
not only tool outputs but also future directions. Thus, we
revealed more challenges and research opportunities.

9 CONCLUSION

With the existence of tools that detect cryptographic API
misuses in Java programs, some people believed that the
research problem is well solved. Our work intended to

assess current tools in different aspects and to reveal the
gaps between existing work and developers’ needs. Namely,
we explored the question: Are existing tools good enough to
help developers eliminate cryptographic API misuses?

Our quantitative and qualitative analysis of existing
tools revealed several interesting findings. First, there is
no tool consistently outperforming other tools. Currently,
the most advanced tools detect API misuses using inter-
procedural program analysis. However, developers still
need better detectors, which conduct more accurate inter-
procedure analysis and perform context-aware analysis to
report API misuses in security-focused implementation.
Second, although some tools provide general guidance on
misuse repairs, they are insufficient to help developers
correctly remove misuses. More detailed and customized
repairing suggestions are still desperately needed. Third,
although some tools explain reported API misuses by citing
vulnerabilities described on CWE, such citations are some-
times unconvincing to developers. It will be better if future
tools can automatically synthesize program-specific attacks
and detail the procedure of security exploits.

Our study shows that the problem of cryptographic
API misuse detection is far from being well solved. In the
future, we will build tools to suggest better repairs and to
synthesize exploits.
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