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Abstract—Stack Overflow (SO) is the most popular online
Q&A site for developers to share their expertise in solving pro-
gramming issues. Given multiple answers to a certain question,
developers may take the accepted answer, the answer from a
person with high reputation, or the one frequently suggested.
However, researchers recently observed that SO contains ex-
ploitable security vulnerabilities in the suggested code of popular
answers, which found their way into security-sensitive high-
profile applications that millions of users install every day. This
observation inspires us to explore the following questions: How
much can we trust the security implementation suggestions on
SO? If suggested answers are vulnerable, can developers rely on
the community’s dynamics to infer the vulnerability and identify
a secure counterpart?

To answer these highly important questions, we conducted a
comprehensive study on security-related SO posts by contrasting
secure and insecure advice with the community-given content
evaluation. Thereby, we investigated whether SO’s gamification
approach on incentivizing users is effective in improving security
properties of distributed code examples. Moreover, we traced
the distribution of duplicated samples over given answers to
test whether the community behavior facilitates or prevents
propagation of secure and insecure code suggestions within SO.

We compiled 953 different groups of similar security-related
code examples and labeled their security, identifying 785 secure
answer posts and 644 insecure answer posts. Compared with
secure suggestions, insecure ones had higher view counts (36,508
vs. 18,713), received a higher score (14 vs. 5), and had significantly
more duplicates (3.8 vs. 3.0) on average. 34% of the posts pro-
vided by highly reputable so-called trusted users were insecure.

Our findings show that based on the distribution of secure
and insecure code on SO, users being laymen in security rely
on additional advice and guidance. However, the community-
given feedback does not allow differentiating secure from insecure
choices. The reputation mechanism fails in indicating trustworthy
users with respect to security questions, ultimately leaving other
users wandering around alone in a software security minefield.

Index Terms—Stack Overflow, crowdsourced knowledge, social
dynamics, security implementation

I. INTRODUCTION

Since its launch in 2008, Stack Overflow (SO) has served
as the infrastructure for developers to discuss programming-
related questions online, and provided the community with
crowdsourced knowledge [1], [2]. Prior work shows that SO
is one of the most important information resources that devel-
opers rely on [3], [4]. Meanwhile, researchers also revealed
that some highly upvoted, or even accepted answers on SO
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contained insecure code [5], [6]. More alarmingly, Fischer et
al. found that insecure code snippets from SO were copied and
pasted into 196,403 Android applications available on Google
Play [5]. Several high-profile applications containing particular
instances of these insecure snippets were successfully attacked,
and user credentials, credit card numbers and other private data
were stolen as a result [7].

These observations made us curious about SO’s reliability
regarding suggestions for security implementations. Taking a
pessimistic view, such insecure suggestions can be expected
to be prevalent on the Q&A site, and consistent corrective
feedback by the programming community may be amiss.
Consequently, novice developers may learn about incorrect
crowdsourced knowledge from such Q&A sites, propagate the
misleading information to their software products or other de-
velopers, and eventually make our software systems vulnerable
to known security attacks.

Therefore, within this paper, we conducted a comprehen-
sive in-depth investigation of the popularity of both secure
and insecure coding suggestions on SO, and the community
activities around them. To ensure a fair comparison between
secure and insecure suggestions, we focused on the discussion
threads related to Java security. We used Baker [8] to mine for
answer posts that contain any code using security libraries, and
extracted 25,855 such code snippets. We reused the security
domain expertise summarized by prior work [5] to manually
label whether a given code snippet is secure or not. However,
different from prior work [5] that studied the application of
insecure SO answers to production code, our work focuses
on the SO suggestions themselves. More specifically, we
studied coding suggestions’ popularity, social dynamics, and
duplication. We also inquired how developers may be misled
by insecure answers on SO.

To identify prevalent topics on SO, we used CCFinder [9] to
detect code clones (i.e., duplicated code) in the data extracted
by Baker. These clones are clustered within clone groups.
953 clone groups were observed to use security library APIs
and implement functionalities like SSL/TLS, symmetric and
asymmetric encryption, etc. Moreover, we found that code
examples within clone groups are more likely to be viewed
than non-duplicated code snippets on SO. This further moti-
vates our sampling method as we can expect clones to have
a higher impact on users and production code. Among the
953 clone groups, there were 587 groups of duplicated secure



code, 326 groups of similar insecure code, and 40 groups with
a mixture of secure and insecure code snippets. These clone
groups covered 1,802 secure code snippets and 1,319 insecure
ones. By mapping cloned code to their container posts, we
contrasted insecure suggestions with secure ones in terms of
their popularity, users’ feedback, degree of duplication, and
causes for duplication.

We explored the following Research Questions (RQs):
• RQ1: How prevalent are insecure coding suggestions on

SO? Prior work witnessed the existence of vulnerable
code on SO, and indicates that such code can mislead
developers and compromise the quality of their software
products [4]–[6]. To understand the number and growth
of secure and insecure options that developers have to
choose from, we (1) compared the occurrence counts
of insecure and secure answers, and (2) observed the
distributions of both kinds of answers across a 10-year
time frame (2008-2017).

• RQ2: Do the community dynamics or SO’s reputation
mechanism help developers choose secure answers over
insecure ones? Reputation mechanisms and voting were
introduced to crowdsourcing platforms to (1) incentivize
contributors to provide high-quality solutions, and (2)
facilitate question askers to identify responders with high
expertise [10]–[12]. We conducted statistical testing to
compare secure and insecure answers in terms of votes,
answerers’ reputations, etc.

• RQ3: Do secure coding suggestions have more duplicates
than insecure ones? When certain answers are repetitively
suggested, it is likely that developers will encounter such
answers more often. Moreover, if these answers are pro-
vided by different users, the phenomenon might facilitate
users’ trust in the answers’ correctness. Therefore, we
compared the degree of repetitiveness for insecure and
secure answers.

• RQ4: Why did users suggest duplicated secure or inse-
cure answers on SO? We were curious about why certain
code was repetitively suggested, and we explored this
facet of community behavior by examining the duplicated
answers posted by the same or different users.

In our study, we made four major observations:
1) As with secure answers, insecure answers are preva-

lent on SO across the entire studied time frame. The
inspected 3,121 snippets from different clone groups
correspond to 785 secure posts and 644 insecure ones.
Among the 505 SSL/TLS-related posts, 355 posts (70%)
suggest insecure solutions, which makes SSL/TLS-
related answers the most unreliable ones on SO. At least
41% of the security-related answers posted every year
are insecure, which shows that security knowledge on
SO in general is not significantly improving over time.

2) The community dynamics and SO’s reputation mecha-
nisms are not reliable indicators for secure and insecure
answers. Compared with secure posts, insecure ones

accepted	answer	

KSOAP	2	Android	with	HTTPS 

reputation	score	

I	am	using	KSOAP2	to	manage	SOAP	in	Android	
but	it	use	https	for	the	SOAP	url	and	I	am	getting	
this	error:	javax.net.ssl.SSLException:	Not	trusted	
server	certificate…	

I	can't	comment	yet	so	i	post	my	comments	to	
rallat	answer	here.	His	solution	works	but	it	
needs	further	explanations.	To	run	ksoap2	with	
ssl:	…	

score	

favorite		
count	

timestamp	

view	count	
tag		…	

Fig. 1: A typical SO discussion thread contains one question
post and one or multiple answer posts [14]

obtained higher scores, more comments, more favorites,
and more views. Although the providers of secure an-
swers received significantly higher reputation scores,
the effect size is negligible (<0.147). 239 of the 536
examined accepted answers (45%) are insecure. 26 out
of the 72 posts (36%) suggested by “trusted users”
(with ≥20K reputation scores [13]) are insecure. These
observations imply that reputation and voting on SO are
not reliable to help users distinguish between secure and
insecure answers.

3) The degree of duplication among insecure answers is
significantly higher than that of secure ones. On average,
there are more clones in an insecure group than a secure
one (3.8 vs. 3.0). It means that users may have to deal
with a large supply of insecure examples for certain
questions, before obtaining secure solutions.

4) Users seem to post duplicated answers, while ignoring
security as a key property. Duplicated answers were
provided due to duplicated questions or users’ intent to
answer more questions by reusing code examples. This
behavior is incentivized by the reputation system on SO.
The more answers are posted by a user and up-ranked
by the community, the higher reputation the user gains.

Our source code and data set are available at https://github.
com/mileschen360/Higgs.

II. BACKGROUND

To facilitate the discussion of SO community activities
around security implementations, we will first introduce SO’s
crowdsourcing model, and then summarize the domain knowl-
edge used to label secure and insecure code snippets.

A. Stack Overflow as a Crowdsourcing Platform

Some observers believe that the success of SO lies in its
crowdsourcing model and the reputation system [2], [15].
The four most common forms of participation are i) question
asking, ii) question answering, iii) commenting, and iv) vot-
ing/scoring [15]. Figure 1 presents an exemplar SO discussion
thread, which contains one question and one or many answers.

https://github.com/mileschen360/Higgs
https://github.com/mileschen360/Higgs


TABLE I: Criteria used to decide code’s security property
Category Parameter Insecure

SSL/TLS

HostnameVerifier allow all hosts
Trust Manager trust all

Version <TLSv1.1
Cipher Suite RC4, 3DES, AES-CBC MD5, MD2

OnReceivedSSLError proceed

Cipher/Mode RC2, RC4, DES, 3DES, AES/ECB,
Blowfish

Symmetric Key static, bad derivation
Initialization Vector

(IV) zeroed, static, bad derivation

Password Based
Encryption (PBE)

<1k iterations, <64-bit salt, static
salt

Asymmetric Key RSA < 2,048 bit, ECC < 224 bit

PBKDF <SHA224, MD2, MD5
Hash Digital Signature SHA1, MD2, MD5

Credentials SHA1, MD2, MD5

Type Random

Random Seeding setSeed→nextBytes, setSeed with
static values

When multiple answers are available, the asker decides which
answer to accept, and marks it with “3”.

After a user posts a question, an answer, or a comment, other
users can vote for or against the post. Users gain reputation
for each up-vote their posts receive. For instance, answers
earn their authors 10 points per up-vote, questions earn 5,
and comments earn 2 [16]. All users initially have only one
reputation point. As users gain more reputation, they are
granted more administrative privileges to help maintain SO
posts [13]. For instance, a user with 15 points can vote up
posts. A user with 125 points can vote down posts. Users
with at least 20K points are considered “trusted users”, and
can edit or delete other people’s posts.

The score of a question or answer post is decided by the up-
votes and down-votes the post received. Users can favorite a
question post if they want to bookmark the question and keep
track of any update on the discussion thread. Each question
contains one or many tags, which are words or phrases to
describe topics of the question. Each post has a timestamp to
show when it was created. Each discussion thread has a view
count to indicate how many times the thread has been viewed.

B. Categorization of Java Security Implementations

Based on state-of-the-art security knowledge, researchers
defined five categories of security issues relevant to library
misuses [5]. Table I shows their criteria, which we use in this
project to decide whether a code snippet is insecure or not.

SSL/TLS: There are five key points concerning how
to securely establish SSL/TLS connections. First, develop-
ers should use an implementation of the HostnameVerifier

interface to verify servers’ hostnames instead of allow-
ing all hosts [7]. Second, when implementing a custom
TrustManager, developers should validate certificates instead
of blindly trusting all certificates. Third, when “TLS” is passed
as a parameter to SSLContext.getInstance(...);, developers
should explicitly specify the version number to be at least 1.1,
because TLS’ lower versions are insecure [17]. Fourth, the
usage of insecure cipher suites should be avoided. Fifth, when
overriding onReceivedSslError(), developers should handle

instead of skipping any certificate validation error. Listing 1
shows a vulnerable snippet that allows all hosts, trusts all
certificates, and uses TLS v1.0.

Listing 1: An example to demonstrate three scenarios of
insecurely using SSL/TLS APIs [18]
// Create a trust manager that does not validate certificate chains (trust all)
p r i v a t e Trus tManager [ ] t r u s t A l l C e r t s = new Trus tManager [ ] {

new X509TrustManager ( ) {
p u b l i c j a v a . s e c u r i t y . c e r t . X 5 0 9 C e r t i f i c a t e [ ]

g e t A c c e p t e d I s s u e r s ( ) { r e t u r n n u l l ;}
p u b l i c vo id c h e c k C l i e n t T r u s t e d ( . . . ) {}
p u b l i c vo id c h e c k S e r v e r T r u s t e d ( . . . ) {} }} ;

p u b l i c S e r v i c e C o n n e c t i o n S E ( S t r i n g u r l ) t h r ow s IOExcep t ion {
t r y {

// Use the default TLSv1.0 protocol
SSLContext sc = SSLContext . g e t I n s t a n c e ( ” TLS ” ) ;
// Install the trust-all trust manager
sc . i n i t ( n u l l , t r u s t A l l C e r t s , new j a v a . s e c u r i t y .

SecureRandom ( ) ) ; . . . } . . .
c o n n e c t i o n = ( Ht tpsURLConnect ion ) new URL( u r l ) .

openConnec t ion ( ) ;
// Use AllowAllHostnameVerifier that allows all hosts
( ( Ht tpsURLConnect ion ) c o n n e c t i o n ) . s e t H o s t n a m e V e r i f i e r ( new

A l l o w A l l H o s t n a m e V e r i f i e r ( ) ) ; }

Symmetric: There are ciphers and modes of operations
known to be insecure. Cryptographic keys and initialization
vectors (IV) are insecure if they are statically assigned, zeroed,
or directly derived from text. Password Based Encryption
(PBE) is insecure if the iteration number is less than 1,000,
the salt’s size is smaller than 64 bits, or a static salt is in use.
Listing 2 presents a vulnerable code example that insecurely
declares a cipher, a key, and an IV.

Listing 2: An example to present several insecure usage
scenarios of symmetric cryptography [19]
// Declare a key parameter with a static value
p r i v a t e s t a t i c b y t e [ ] key = ”12345678” . g e t B y t e s ( ) ;
// Declare an IV parameter with a static value
p r i v a t e s t a t i c b y t e [ ] i v = ”12345678” . g e t B y t e s ( ) ;
p u b l i c s t a t i c S t r i n g e n c r y p t ( S t r i n g i n ) {

S t r i n g c y p e r t = i n ;
t r y {

I v P a r a m e t e r S p e c i vSp ec = new I v P a r a m e t e r S p e c ( i v ) ;
// Create a secret key with the DES cipher
Secre tKeySpec k = new Secre tKeySpec ( key , ”DES” ) ;
// Declare a DES cipher
Ci ph e r c = C iph e r . g e t I n s t a n c e ( ”DES /CBC/ PKCS7Padding ” ) ;
c . i n i t ( C ip he r .ENCRYPT MODE, k , i v Sp ec ) ;
. . . } }

Asymmetric: Suppose that a code snippet uses either
RSA or ECC APIs to generate keys. When the specified key
lengths for RSA and ECC are separately shorter than 2,048
bits and 224 bits, we consider the API usage to be insecure.
Listing 3 shows a vulnerable code example.

Listing 3: An example that insecurely uses RSA by specifying
the key size to be 1024 [20]
K e y P a i r G e n e r a t o r kpg = K e y P a i r G e n e r a t o r . g e t I n s t a n c e ( ”RSA” ) ;
kpg . i n i t i a l i z e ( 1 0 2 4 ) ;
KeyPa i r kp = kpg . g e n e r a t e K e y P a i r ( ) ;
RSAPublicKey pub = ( RSAPublicKey ) kp . g e t P u b l i c ( ) ;
RSAPrivateKey p r i v = ( RSAPrivateKey ) kp . g e t P r i v a t e ( ) ;

Hash: In the context of password-based key derivation,
digital signatures, and authentication/authorization, developers
may explicitly invoke broken hash functions. Listing 4 shows
an example using MD5.



Listing 4: Insecurely creating a message digest with MD5 [21]
f i n a l MessageDiges t md = MessageDiges t . g e t I n s t a n c e ( ” md5 ” ) ;
// It is also insecure to hardcode the plaintext password
f i n a l b y t e [ ] d i g e s t O f P a s s w o r d = md . d i g e s t ( ” HG58YZ3CR9 ” .

g e t B y t e s ( ” u t f −8”) ) ;

Random: To make the generated random numbers un-
predictable and secure, developers should use SecureRandom

instead of Random. When using SecureRandom, developers can
either (1) call nextBytes() only, or (2) call nextBytes() first
and setSeed() next. Developers should not call setSeed()

with static values. Listing 5 presents an example using
SecureRandom insecurely.

Listing 5: Using SecureRandom with a static seed [22]
b y t e [ ] k e y S t a r t = ” e n c r y p t i o n key ” . g e t B y t e s ( ) ;
SecureRandom s r = SecureRandom . g e t I n s t a n c e ( ”SHA1PRNG” ) ;
s r . s e t S e e d ( k e y S t a r t ) ;

III. METHODOLOGY

To collect secure and insecure answer posts, we first ex-
tracted code snippets from SO that used any security API
(Section III-A). Next, we sampled the extracted code corpus by
detecting duplicated code (Section III-B). Finally, we manually
labeled sampled code as secure, insecure, or irrelevant, and
mapped the code to related posts (Section III-C). Additionally,
we compared the view counts of the sampled posts vs. unse-
lected posts to check samples’ prevalence (Section III-D).

A. Code Extraction

To identify coding suggestions, this step extracts security-
related answer posts by analyzing (1) tags of question posts,
and (2) the code snippets’ API usage of answer posts. After
downloading the Stack Overflow data as XML files [23], we
used a tool stackexchange-dump-to-postgres [24] to convert
the XML files to Postgres database tables. Each row in the
database table “Posts” corresponds to one post. A post’s body
text may use the HTML tag pair <code> and </code> to
enclose source code, so we leveraged this tag pair to extract
code. Since there were over 40 million posts under processing,
and one post could contain multiple code snippets, it is very
challenging to efficiently identify security implementations
from a huge amount of noisy code data. Thus, we built two
heuristic filters to quickly skip irrelevant posts and snippets.

TABLE II: Tags used to locate relevant SO discussion threads

Category Tags
Java platforms android, applet, eclipse, java, java1.4, java-7, java-ee,

javamail, jax-ws, jdbc, jndi, jni, ...
Third-party

tools/libraries axis2, bouncycastle, gssapi, httpclient, java-metro-
framework, openssh, openssl, spring-security, ...

Security aes, authentication, certificate, cryptography, des, en-
coding, jce, jks, jsse, key, random, rsa, security, sha,
sha512, single-sign-on, ssl, tls, X509certificate, ...

1) Filtering by question tags: As tags are defined by askers
to describe the topics of questions, we relied on tags to skip
obviously irrelevant posts. To identify as many security coding
suggestions as possible, we inspected the 64 cryptography-
related posts mentioned in prior work [6], and identified 93

tags. If a question post contains any of these tags, we extracted
code snippets from the corresponding answer posts. As shown
in Table II, these tags are either related to Java platforms, third-
party security libraries or tools, or security concepts.

2) Filtering by security API usage: Similar to prior
work [5], we used Baker [8] to decide whether a snippet calls
any security API. This paper focuses on the following APIs:
• Java platform security: org.jetf.jgss.*, android.security.*,

com.sun.security.*, java.security.*, javax.crypto.*,
javax.net.ssl.*, javax.security.*, javax.xml.crypto.*;

• Third-party security libraries: BouncyCastle [25], GNU
Crypto [26], jasypt [27], keyczar [28], scribejava [29],
SpongyCastle [30].

After taking in a set of libraries and a code snippet, Baker
(1) extracts all APIs of types, methods, and fields from the
libraries, (2) extracts names of types, methods, and fields,
used in the code snippet, and (3) iteratively deduces identifier
mappings between the extracted information. Intuitively, when
multiple type APIs (e.g., a.b.C and d.e.C) can match a used
type name C, Baker compares the invoked methods on C against
the method APIs declared by each candidate type, and chooses
the candidate that contains more matching methods.

We included a code snippet if Baker finds at least one
API (class or method) with an exact match. However, Baker’s
result set is not fully accurate and requires a number of post-
processing steps to reduce false positives. These include a
blacklist filter for standard Java types (e.g., String) and very
popular methods (e.g., get()). Baker’s oracle contains only the
given security APIs, which helped reduce false positives when
detecting secure code but did not help reduce false negatives.

B. Clone Detection

With the filters described above, we identified 25,855 code
snippets (from 23,224 posts) that are probably security-related.
Since it is almost impossible to manually check all these
snippets to identify secure and insecure code, we decided to (1)
sample representative extracted code via clone detection, and
then (2) manually label the samples. In addition to sampling,
clone detection facilitates our research in two further ways.
First, by identifying duplicated code with CCFinder [9], we
could explore the degree of duplication among secure and
insecure code. Second, through clustering code based on their
similarity, we could efficiently read similar code fragments,
and determine their security property in a consistent way. With
the default parameter setting in CCFinder, we identified 2,657
clone groups that contained 8,690 code snippets, with each
group having at least two snippets.

C. Code Labeling

We manually examined each of those 8,690 snippets and
labeled code based on the criteria mentioned in Section II. If
a snippet meets any criteria of insecure code shown in Table I,
it is labeled as “insecure”. If the snippet uses any security
API but does not meet any criteria, it is labeled as “secure”;
otherwise, it is “irrelevant”. Depending on the APIs involved,
we also decided to which security category a relevant post



TABLE III: Code labeling results for 2,657 clone groups

Secure Insecure Mixed Irrelevant Total

# of clone groups 587 326 40 1,704 2,657
# of snippets 1,802 1,319 0 5,569 8,690

# of answer posts 785 644 0 2,133 3,562
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Fig. 2: CDFs of view count among the included answers,
excluded ones, and all answers related to Baker’s output

belongs. When unsure about certain posts, we had discussions
to achieve consensus. Finally, we randomly explored a subset
of the labeled data to double check the correctness.

Table III presents our labeling results for the inspected 2,657
clone groups. After checking individual code snippets, we
identified 587 secure groups, 326 insecure groups, 40 mixed
groups, and 1,704 irrelevant groups. In particular, a mixed
group has both secure snippets and insecure ones, which are
similar to each other. Although two filters were used (see
Section III-A), 64% of the clone groups from refined data
were still irrelevant to security, which evidences the difficulty
of precisely identifying security implementation with Baker.

The clone groups cover 1,802 secure snippets, 1,319 in-
secure ones, and 5,569 irrelevant ones. When mapping these
snippets to the answer posts (which contain them), we identi-
fied 785 secure answers, 644 insecure ones, and 2,133 irrele-
vant ones. One answer can have multiple snippets of different
clone groups. Therefore, we consider a post “insecure” if
it contains any labeled insecure code. A post was labeled
“secure” if it has no insecure snippet but at least one secure
snippet. If a post does not contain any (in)secure snippet, it is
labeled as “irrelevant”.

D. Verifying the Prevalence of Sampled Posts

To check whether our clone-based approach actually in-
cluded representative SO posts, we separately computed the
cumulative distribution functions (CDF) [31] of view count
for the included 3,562 posts (as mentioned in Table III), the
excluded 19,662 posts, and the complete set of 23,224 posts
identified by Baker. As shown in Fig. 2, the “included” curve
is beneath the “all” and “excluded” curves. This shows that
the highly viewed answers take up a higher percentage in our
sample set than the excluded answers.
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IV. MAJOR FINDINGS

In this section, we present our results and discuss the main
findings regarding our stated research questions.

A. Popularity of Secure and Insecure Code Suggestions

Figure 3 presents the distribution of 1,429 answer posts
among the 5 security categories. Since some posts contain
multiple snippets of different categories, the total number of
plotted secure and insecure posts in Figure 3 is 1,506, slightly
larger than 1,429. Among the categories, SSL/TLS contains the
most posts (34%), while Random has the fewest posts (2%).
Two reasons can explain such a distribution. First, developers
frequently use or are more concerned about APIs of SSL/TLS,
Symmetric, and Hash. Second, the criteria we used to label
code contain more diverse rules for the above-mentioned three
categories, so we could identify more instances of such code.

There are many more insecure snippets than secure ones in
the SSL/TLS (355 vs. 150) category, indicating that developers
should be quite cautious when searching for such code.
Meanwhile, secure answers dominate the other categories,
accounting for 94% of Asymmetric posts, 71% of Hash posts,
54% of Symmetric posts, and 52% of Random posts. However,
notice that across these 4 categories, only 67% of the posts
are secure; that is, considerable room for error remains.

Finding 1: 644 out of the 1,429 inspected answer posts
(45%) are insecure, meaning that insecure suggestions
popularly exist on SO. Insecure answers dominate, in
particular, the SSL/TLS category.

To explore the distribution of secure and insecure answers
over time, we clustered answers based on their timestamps.
As shown in Figure 4, both types of answers increased year-
by-year from 2008 to 2014, and decreased in 2015-2017. This
may be because SO reached its saturation for Java security-
related discussions in 2014-2015. In 2008, 2009, and 2011,
insecure answers were posted more often than secure ones,
taking up 53%-100% of the sampled data of each year. For
the other years, secure posts constitute the majority within the
yearly sampled data set, accounting for 53%-59%.

To further determine whether older posts are more likely
to be insecure, we considered post IDs as logical timestamps.
We applied a Mann-Whitney U test (which does not require
normally distributed data [32]), and calculated the Cliff’s delta
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size (which measures the difference’s magnitude [33]). The
resulting p-value is 0.02, with Cliff’s ∆=0.07. It means that
secure answers are significantly more recent than insecure
ones, but the effect size is negligible.

Two reasons can explain this finding. First, some vul-
nerabilities were recently revealed. Among the 17 insecure
posts in 2008 and 2009, 6 answers use MD5, 6 answers
trust all certificates, and 4 answers use TLS 1.0. However,
these security functions were found broken in 2011-2012 [7],
[34]–[36], which made the answers obsolete and insecure.
Second, some secure answers were posted to correct insecure
suggestions. For instance, we found a question inquiring about
fast and simple string encryption/decryption in Java [37].
The accepted answer in 2011 suggested DES—an insecure
symmetric-key algorithm. Later, various comments pinpointed
the vulnerability and a secure answer was provided in 2013.

Note that there can be a significant lag until the community
adopts new secure technologies, and phases out technologies
known to be insecure. Although MD5’s vulnerability was
exploited by Flame malware in 2012 [34], as shown in Fig. 5,
MD5 was still popularly suggested afterwards, obtaining a
peak number of related answers in 2014.

Finding 2: Insecure posts led the sampled data in
2008-2011, while secure ones were dominant after-
wards. Older security-related posts are less reliable,
likely because recently revealed vulnerabilities out-
dated older suggestions. We found only few secure
answers suggested to correct outdated, insecure ones.

B. Community Dynamics Towards Secure and Insecure Code

For each labeled secure or insecure post, we extracted the
following information: (1) score, (2) comment count, (3) the
answerer’s reputation score, (4) the question’s favorite count,
and (5) the discussion thread’s view count.

Comparison of Mean Values. Table IV compares these
information categories for the 785 secure posts and 644
insecure ones and applies Mann-Whitney U tests to deter-
mine significant results. On average, secure posts’ answerers
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Fig. 5: Distributions of MD5 and SHA256 related posts

have higher reputation (18,654 vs. 14,678). However, for the
SSL/TLS posts, the insecure answer providers have higher
reputation (15,695 vs. 14,447). Moreover, insecure posts have
higher scores, and more comments, favorites, and views. Users
seemed to be more attracted by insecure posts, which is
counterintuitive. We would expect secure answers to be seen
more favorable; with more votes, comments and views.

Three reasons can explain our observation. First, software
developers often face time constraints. When stuck with cod-
ing issues (e.g., runtime errors), developers are tempted to
take insecure but simpler solutions [6]. Take the vulnerable
SSL/TLS usage in Listing 1 for example. The insecure code
was frequently suggested on SO, and many users voted for
it mainly because the code is simple and useful to resolve
connection exceptions. Nevertheless, the simple solution es-
sentially skips SSL verification and voids the protection mech-
anism. In comparison, a better solution should use certificates
from a Certification Authority (CA) or self-signed certificates
to drive the customization of TrustManager, and verify cer-
tificates with more complicated logic [39].

Second, some insecure algorithms are widely supported by
Java-based libraries, which can promote developers’ tendency
to code insecurely. For instance, up till the current version
Java 9, Java platform implementations have been required
to support MD5—the well-known broken hash function [40].
Third, insecure posts are less recent and may have accumulated
more positive scores than recent secure posts.

Finding 3: On average, insecure posts received higher
scores, more comments, more favorites, and more
views. It implies that (1) more user attention is at-
tracted by insecure answers; and (2) users cannot rely
on the voting system to identify secure answers.

Comparison of p-values and Cliff’s ∆. Table IV shows
that among all posts, insecure ones obtained significantly
more comments (p = 0.02) and views (p = 1.5e−3), while
the effect sizes are negligible. Specifically for the Random
category, insecure posts have significantly higher view counts
(p = 0.01) and the effect size is large. Meanwhile, the owners
of secure answer posts have significantly higher reputation
(p = 0.02) but the magnitude is also negligible.



TABLE IV: Comparison between secure and insecure posts
Score Comment count Reputation Favorite count View count

All

Secure mean 5 2 18,654 8 18,713
Insecure mean 14 3 14,678 15 36,580

p-value 0.97 0.02 0.02 0.09 1.5e-3
Cliff’s ∆ - 0.07 (negligible) 0.07 (negligible) - 0.10 (negligible)

Category 1: Secure mean 7 2 14,447 9 21,419
Insecure mean 18 3 15,695 19 37,445

SSL/TLS p-value 0.24 3.3e-4 0.42 0.86 0.31
Cliff’s ∆ - 0.20 (small) - - -

Category 2: Secure mean 5 3 19,347 7 16,232
Insecure mean 7 3 10,057 6 16,842

Symmetric p-value 0.29 0.82 0.45 0.36 0.10
Cliff’s ∆ - - - - -

Category 3: Secure mean 5 2 17,079 4 11,987
Insecure mean 8 2 14,151 3 9,470

Asymmetric p-value 0.17 0.45 0.72 0.95 0.77
Cliff’s ∆ - - - - -

Category 4: Secure mean 5 2 20,382 8 21,254
Insecure mean 14 2 20,018 22 74,482

Hash p-value 0.26 0.78 0.18 0.20 0.07
Cliff’s ∆ - - - - -

Category 5: Secure mean 1 3 33,517 0 1,031
Insecure mean 21 6 17,202 31 56,700

Random p-value 0.04 0.02 0.27 0.02 0.01
Cliff’s ∆ 0.58 (large) 0.68 (large) - 0.64 (large) 0.74 (large)

Similar to prior work [38], we interpreted the computed Cliff’s delta value v in the following way: (1) if v < 0.147, the effect size is “negligible”; (2) if
0.147 ≤ v < 0.33, the effect size is “small’; (3) if 0.33 ≤ v < 0.474, the effect size is “medium”; (4) otherwise, the effect size is “large”.
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Figure 6 further clusters answers based on their owners’
reputation scores. We used logarithmic scales for the hori-
zontal axis, because the scores vary a lot within the range
[1, 990,402]. Overall, the secure and insecure answers have
similar distributions among different reputation groups. For
instance, most answers were provided by users with scores
within [102, 104), accounting for 61% of secure posts and
68% of insecure posts. Among the 208 posts by trusted users,
71 answers (34%) are insecure and not reliable. One reason
to explain why high reputation scores do not guarantee secure
answers can be that users earned scores for being an expert
in areas other than security. Responders’ reputation scores do
not necessarily indicate the security property of the provided
answers. Therefore, SO users should not blindly trust the
suggestions given by highly reputable contributors.

Finding 4: The users who provided secure answers
have significantly higher reputation than the providers
of insecure answers, but the difference in magnitude
is negligible. Users cannot rely on the reputation
mechanism to identify secure answers.
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Comparison of accepted answers. It is natural for SO
users to trust accepted answers. Among the 1,429 posts, we
found 536 accepted answers (38%). 297 accepted answers
are secure, accounting for 38% of the inspected secure posts.
239 accepted answers are insecure, accounting for 37% of the
inspected insecure posts. It seems that accepted answers evenly
distribute among secure and insecure posts; they are not good
indicators of suggestions’ security property.

Finding 5: Accepted answers are also not reliable for
users to identify secure coding suggestions.

C. Duplication of Secure and Insecure Code

Among the 953 security-related clone groups, we explored
the degree of code duplication for secure clone groups, inse-
cure groups, and mixed groups. Figure 7 shows the distribution
of clone groups based on their sizes. Similar to Fig. 6, we used
logarithmic scales for both the horizontal and vertical axes. In
Fig. 7, most clone groups are small, with 2-3 similar snippets.



TABLE V: Comparison between secure and insecure groups
in terms of their group sizes

Secure groups’
mean

Insecure
groups’ mean p-value Cliff’s ∆

Size 3.0 3.8 1.3e-4 0.13 (negligible)

The number of groups decreases dramatically as the group
size increases. Interestingly, within [24, 26), there are more
insecure groups than secure ones. Table V compares the sizes
of secure and insecure groups. Surprisingly, insecure groups
have significantly larger sizes than secure ones, although
the difference is negligible. Our observations imply that the
frequently mentioned code snippets on SO are not necessarily
more secure than less frequent ones. Users cannot trust code’s
repetitiveness to decide the security property.

Finding 6: Repetitiveness does not guarantee secu-
rity, so users cannot assume a snippet to be secure
simply because it is recommended many times.

To understand why there are mixed groups that contain
similar secure and insecure implementations, we conducted
a case study on 10 randomly selected mixed groups. Among
all these groups, secure snippets differ from insecure ones
by using distinct parameters when calling security APIs. This
implies a great opportunity to build security bug detection tools
that check for the parameter values of specific APIs.

Listing 6: A clone group with both secure and insecure code
// An insecure snippet using AES/ECB to create a cipher [41]
Ci ph e r c i p h e r = C iph e r . g e t I n s t a n c e ( ”AES /ECB/ PKCS5Padding ” ,

” SunJCE ” ) ;
Key skeySpec = KeyGenera to r . g e t I n s t a n c e ( ”AES” ) . g e n e r a t e K e y ( ) ;
c i p h e r . i n i t ( C ip he r .ENCRYPT MODE, skeySpec ) ;
System . o u t . p r i n t l n ( A r r a ys . t o S t r i n g ( c i p h e r . d o F i n a l ( new b y t e

[ ] { 0 , 1 , 2 , 3 }) ) ) ;
//A secure snippet using AES/CFB to create a cipher [42]
f i n a l C i ph e r c i p h e r = C iph e r . g e t I n s t a n c e ( ”AES / CFB / NoPadding ” ,

” SunJCE ” ) ;
f i n a l Sec re tKey skeySpec = KeyGenera to r . g e t I n s t a n c e ( ”AES” ) .

g e n e r a t e K e y ( ) ;
c i p h e r . i n i t ( C ip he r .ENCRYPT MODE, skeySpec ) ;
System . o u t . p r i n t l n ( A r r a ys . t o S t r i n g ( c i p h e r . d o F i n a l ( new b y t e

[ ] { 0 , 1 , 2 , 3 }) ) ) ;

Listing 6 shows a mixed clone group, where the insecure
code uses “AES/ECB” to create a cipher, and the secure code
uses “AES/CFB”. Actually, both snippets were provided by the
same user, which explains why they are so similar. These
answers are different because the askers inquired for different
modes (ECB vs. CFB). Although the answerer is an expert in
using both APIs and has a high reputation score 27.7K, he/she
did not mention anything about the vulnerability of ECB.
This may imply a lack of security expertise or vulnerability
awareness of highly reputable SO users, and a well-motivated
need for automatic tools to detect and fix insecure code.

Finding 7: Secure and insecure code in the same
mixed group often differs by passing distinct parame-
ters to the same security APIs highlighting opportuni-
ties for automatic tools to handle security weaknesses.

D. Creation of Duplicated Secure and Insecure Code

We conducted two case studies to explore why duplicated
code was suggested.

Case Study I: Duplicated answers by different users.
We examined the largest secure group and largest insecure
group. The secure group has 65 clone instances, which are
similar to the code in Listing 7. These snippets were offered
to answer questions on how to enable an Android app to
log into Facebook. The questions are similar but different in
terms of the askers’ software environments (e.g., libraries and
tools used) and potential solutions they tried. Among the 65
answers, only 18 (28%) were marked as accepted answers.
The majority of duplicated suggestions are relevant to the
questions, but cannot solve the issues. SO users seemed to
repetitively provide “generally best practices”, probably be-
cause they wanted to earn points by answering more questions.

Listing 7: An exemplar snippet to generate a key hash for
Facebook login [43]
P a c k a g e I n f o i n f o = ge tPackageManager ( ) . g e t P a c k a g e I n f o ( ” com .

f a c e b o o k . samples . h e l l o f a c e b o o k ” , PackageManager .
GET SIGNATURES) ;

f o r ( S i g n a t u r e s i g n a t u r e : i n f o . s i g n a t u r e s ) {
MessageDiges t md = MessageDiges t . g e t I n s t a n c e ( ”SHA” ) ;
md . u p d a t e ( s i g n a t u r e . t o B y t e A r r a y ( ) ) ;
Log . d ( ” KeyHash : ” , Base64 . e n c o d e T o S t r i n g (md . d i g e s t ( ) ,

Base64 . DEFAULT) ) ; }

The largest insecure group contains 32 clone instances,
which are similar to the code in Listing 1. The questions are all
about how to implement SSL/TLS or resolve SSL connection
exceptions. 13 of these answers (41%) were accepted. We
noticed that only one answer warns “Do not implement this
in production code . . . ” [44]. Six answers have at least one
comment talking about the vulnerability. The remaining 25
answers include nothing to indicate the security issue.

Case Study II. Duplicated answers by the same users.
In total, 109 users reused code snippets to answer multiple
questions. Among the 207 clone groups these users produced,
there are 111 secure groups, 90 insecure groups, and 6 mixed
groups. 66 users repetitively posted secure answers, and 49
users posted duplicated insecure answers. Six among these
users posted both secure and insecure answers. Most users
(i.e., 92) only copied code once and produced two duplicates.
One user posted nine insecure snippets, with seven snippets
using an insecure version of TLS, and two snippets trusting all
certificates. This user has 17.7K reputation (top 2% overall)
and is an expert in Android. By examining the user’s profile,
we did not find any evidence to show that the user intentionally
misled people. It seems that the user was not aware of the
vulnerability when posting these snippets.

To understand whether duplicated code helps answer ques-
tions, we randomly sampled 103 (of the 208) clone groups
resulting in 56 secure clone pairs, 45 insecure pairs, and 2
mixed pairs. Unexpectedly, we found that 46 pairs (45%) did
not directly answer the questions. For instance, a user posted
code without reading the question and received down-vote
(i.e., −1) [45]. In the other 57 cases, duplicated code was
provided to answer similar or identical questions.



Finding 8: Duplicated answers were created because
(1) users asked similar or related questions; and (2)
some users blindly copied and pasted code to answer
more questions and earn points. However, we did not
identify any user that intentionally misled people by
posting insecure answers.

V. RELATED WORK

A. Security API Misuses
Prior studies showed that API misuses caused security

vulnerabilities [5], [7], [35], [46]–[50]. For instance, Lazar et
al. analyzed 369 published cryptographic vulnerabilities in the
CVE database, and found that 83% of them were caused by
API misuses [48]. Egele et al. built a static checker for six
well-defined Android cryptographic API usage rules (e.g., “Do
not use ECB mode for encryption”). They analyzed 11,748
Android applications for any rule violation [47], and found
88% of the applications violating at least one checked rule.
Instead of checking for insecure code in CVE or software
products, we focused on SO. Because the insecure coding
suggestions on SO can be read and reused by many developers,
they have a profound impact on software quality.

The research by Fischer et al. [5] is closely related to
our work. In their work, secure and insecure snippets from
SO were used to search for code clones in Android apps.
Our research is different in three aspects. First, it investigates
the evolution and distribution of secure and insecure coding
suggestions within the SO ecosystem itself. Second, while
[5] compares average score and view counts for secure and
insecure snippets, they merely do this for snippets whose exact
copies have migrated into apps but not for our much broader
set of snippets on SO. Therefore, the dataset of [5] is not
representative to evaluate the impact of severity, community’s
awareness, and popularity of unreliable SO suggestions on
secure coding. Third, we conducted not only statistical testing
on a comprehensive dataset to quantitatively contrast score,
view count, comment count, reputation, and favorite count,
but also case studies to qualitatively analyze the differences.
We further explored the missing link between gamification and
security advice quality on crowdsourcing platforms.

B. Developer Studies
Researchers conducted interviews or surveys to understand

developers’ security coding practices [4], [51]–[53]. For ex-
ample, Nadi et al. surveyed 48 developers and revealed that
developers found it difficult to use cryptographic algorithms
correctly [53]. Xie et al. interviewed 15 developers, and found
that (1) most developers had reasonable knowledge about soft-
ware security, but (2) they did not consider security assurance
as their own responsibility [51]. Acar et al. surveyed 295
developers and conducted a lab user study with 54 students and
professional Android developers [4]. They observed that most
developers used search engines and SO to address security
issues. These studies inspired us to explore how much we can
trust the crowdsourced knowledge of security coding on SO.

C. Empirical Studies on Stack Overflow

Researchers conducted various studies on SO [3], [6], [50],
[54]–[57]. Specifically, Zhang et al. studied the JDK API
usage recommended by SO, and observed that 31% of the
studied posts misused APIs [6]. Meng et al. manually in-
spected 503 SO discussion threads related to Java security [6].
They revealed various secure coding challenges (e.g., hard-
to-configure third-party frameworks) and vulnerable coding
suggestions (e.g., SSL/TLS misuses). Mamykina et al. re-
vealed several reasons (e.g., high response rate) to explain why
SO is one of the most visible venues for expert knowledge
sharing [3]. Vasilescu et al. studied the associations between
SO and GitHub, and found that GitHub committers usually
ask fewer questions and provide more answers [58]. Bosu et
al. analyzed the dynamics of reputation building on SO, and
found that answering as many questions as possible can help
users quickly earn reputation [54].

In comparison, our paper quantitatively and qualitatively
analyzed secure and insecure SO suggestions in terms of (1)
their popularity, (2) answerers’ reputations, (3) the commu-
nity’s feedback to answers (e.g., votes and comments), and (4)
the degree and causes of duplicated answers. We are not aware
of any prior work that analyzes SO posts in these aspects.

D. Duplication Detection Related to SO or Vulnerabilities

Researchers used clone detection to identify duplication
within SO or between SO and software products [59]–[63].
Specifically, Ahasanuzzaman et al. detected duplicated SO
questions with machine learning [60]. An et al. compared code
between SO and Android apps and observed unethical code
reuse phenomena on SO [61]. Other researchers used static
analysis to detect vulnerabilities caused by code cloning [64]–
[67]. For instance, Kim et al. generate a fingerprint for
each Java method to efficiently search for clones of a given
vulnerable snippet [67]. Different from prior work, we did
not invent new clone detection techniques or compare code
between SO and software projects. We used clone detection
to (1) sample crawled security-related code, and (2) explore
why SO users posted similar code to answer questions.

VI. OUR RECOMMENDATIONS

By analyzing SO answer posts relevant to Java-based secu-
rity library usage, we observed the wide-spread existence of
insecure code. It is worrisome to learn that SO users cannot
rely on either the reputation mechanism or voting system to
infer an answer’s security property, A recent Meta Exchange
discussion thread also shows the frustration of SO developers
to keep outdated security answers up to date [68]. Below are
our recommendations based on this analysis.

a) For Tool Builders: Explore approaches that accu-
rately and flexibly detect and fix security bugs. Although
a few tools identify security API misuses through static
program analysis or machine learning [5], [47], [69], [70], they
are unsatisfactory due to the (1) hard-to-extend API misuse
patterns hardcoded in tools, and (2) hard-to-explain machine
learning results. People report vulnerabilities and patches on



CVE and in security papers. Tools like LASE [71] were built
to (i) generalize program transformation from concrete code
changes, and (ii) leverage the transformation to locate code
for similar edits. If tool developers can extend such tools to
compare secure-insecure counterparts, they can automatically
fix vulnerabilities in a flexible way.

b) For SO Developers: Integrate static checkers to scan
existing corpus and SO posts under submission. Automatically
add warning messages or special tags to any post that has
vulnerable code. Encourage moderators or trusted users to
exploit clone detection technologies in order to efficiently
detect and remove both duplicated questions and answers.
Such deduplication practices will not only save users’ time
and effort of reading/answering useless duplicates, but also
mitigate the misleading consensus among multiple similar
insecure suggestions. As user profiles include top tags to re-
flect the frequently asked/answered questions by users. instead
of accumulating a single reputation score for each user, SO
developers can compute one score for each top tag to better
characterize users’ expertise.

c) For Designers of Crowdsourcing Platforms: Provide
incentives to users for downvoting or detailing vulnerabilities
and suggesting secure alternatives. Introduce certain mecha-
nisms to encourage owners of outdated or insecure answers to
proactively archive or close such posts. We expect researchers
from the usable security and HCI domain to evaluate and test
new design patterns that integrate security evaluation in the
gamification approach.

VII. THREATS TO VALIDITY

a) Threat to External Validity: This study labels insecure
code based on the Java security rules summarized by prior
work [5], so our studied insecure snippets are limited to Java
code and these rules. Since we used the state-of-the-art inse-
curity criteria, our analysis revealed as diverse insecure code
as possible. In the future, we plan to identify more kinds of
insecure code by considering different programming languages
and exploiting multiple vulnerability detection tools [72], [73].

b) Threat to Construct Validity: Although we tried our
best to accurately label code, our analysis may be still subject
to human bias and cannot scale to handle all crawled data or
more security categories. We conservatively assume a snippet
to be secure if it does not match any given rule. However, it
is possible that some labeled secure snippets actually match
the insecurity criteria not covered by this study, or will turn
out to be insecure when future attack technologies are created.
We concluded that insecure answers are popular on SO and
gain high scores, votes, and views. Even if the labels of some
existing secure answers will be corrected as insecure in the
future, our conclusion generally holds.

c) Threat to Internal Validity: We leveraged clone de-
tection to sample the extracted code snippets and reduce
our manual analysis workload. Based on code’s occurrence
repetition, clone detection can ensure the representativeness
of sampled data. However, the measurement on a sample data
set may be still different from that of the whole data set. Once

we build automatic approaches to precisely identify security
API misuses, we can resolve this threat.

VIII. CONCLUSION

We aimed to assess the reliability of the crowdsourced
knowledge on security implementation. Our analysis of 1,429
answer posts on SO revealed 3 insights.

1) In general secure and insecure advices more or less
balance each other (55% secure and 45% insecure).
Users without security knowledge may heavily rely on
the community to provide helpful feedback in order
to identify secure advice. Unfortunately, we found the
community’s feedback to be almost useless. For cer-
tain cryptographic API usage scenarios, the situation is
even worse: insecure coding suggestions about SSL/TLS
dominate the available options. This is particularly
alarming as SSL/TLS is one of the most common use
cases in production systems according to prior work [5].

2) The reputation mechanism and voting system popularly
used in crowdsourcing platforms turn out to be pow-
erless to remove or discourage insecure suggestions.
Insecure answers were suggested by people with high
reputation and widely accepted as easy fixes for pro-
gramming errors. On average, insecure answers received
more votes, comments, favorites, and views than secure
answers. As a countermeasure, security evaluation can
be included in the voting and reputation system to
establish missing incentives for providing secure and
correcting insecure content.

3) When users are motivated to earn reputation by answer-
ing more questions, the platform encourages contributors
to provide duplicated, less useful, or insecure coding
suggestions. Therefore, with respect to security, SO’s
gamification approach counteracts its original purpose
as it promotes distribution of secure and insecure code.
Although we did not identify any malicious user that
misuses SO to propagate insecure code, we do not
see any mechanism designed to prevent such malicious
behaviors, either.

When developers refer to crowdsourced knowledge as one
of the most important information resources, it is crucially
important to enhance the quality control of crowdsourcing
platforms. This calls for a strong collaboration between devel-
opers, security experts, tool builders, educators, and platform
providers. By educating developers to contribute high-quality
security-related information, and integrating vulnerability and
duplication detection tools into platforms, we can improve
software quality via crowdsourcing. Our future work will focus
on building the needed tool support.
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